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Decoding words during sentence
production with ECoG reveals syntactic
role encoding and structure-
dependent temporal dynamics
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Sentence production is the uniquely human ability to transform complex thoughts into strings of
words.Despite the importanceof this process, languageproduction researchhasprimarily focusedon
single words. It remains a largely untested assumption that the principles of word production
generalize to more naturalistic utterances like sentences. Here, we investigate this using high-
resolution neurosurgical recordings (ECoG) and an overt production experiment where ten patients
produced six words in isolation (picture naming) and in sentences (scene description). We trained
machine learning classifiers to identify the unique brain activity patterns for each word during picture
naming, and used these patterns to decode which words patients were processing while they
produced sentences. Our findings confirm that words share cortical representations across tasks, but
reveal a division of laborwithin the language network. In sensorimotor cortex, wordswere consistently
activated in theorder inwhich theywere said in the sentence.However, in prefrontal cortex, theorder in
which words were processed depended on the syntactic structure of the sentence. In non-canonical
sentences (passives), we further observed a spatial code for syntactic roles, with subjects selectively
encoded in inferior frontal gyrus (IFG) and objects selectively encoded in middle frontal gyrus (MFG).
We suggest that these complex dynamics of prefrontal cortex may impose a subtle pressure on
language evolution, potentially explaining why nearly all the world’s languages position subjects
before objects.

Many animals use symbolic forms of communication: dolphins have names
1, bees dance to signal nectar locations2, and monkeys and birds use
predator-specific calls3,4. While human word (or lexical) knowledge is par-
ticularly vast, involving tens of thousands of words, the truly remarkable
feature of human language is our ability to combine these words into sen-
tences, enabling us to express a limitless number of thoughts and ideas.

This communicative ability is central towhoweare, but remainspoorly
understood at the neural level. In particular, the neuroscience of sentence
production has been hindered by limitations of traditional noninvasive
neural measures, which limit spatial or temporal resolution and are sus-
ceptible to motor artifacts, and by the difficulty of experimentally control-
ling what sentences participants say. Due largely to these challenges,

language production research has remained primarily focused on single
words, typically employing picture naming paradigms where a participant
sees a picture of, e.g., a dog, and says “dog.” However, behavioral studies
have demonstrated that sentence production is not simply a sequence of
single-word production tasks5,6. The historical focus on words has left a
critical gap in understanding how the brain produces more complex lin-
guistic constructions like sentences.

Among the important insights from research at the word level is that
words are not unitary representations. Instead, lexical knowledge
involves distinct representations of a word’s semantic (i.e., meaning)7–9,
phonological8–11, articulatory12, and grammatical features (lemmas)10,13.
Each of these representations is associated with distinct cortical
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regions14,15, with articulatory planning in inferior frontal gyrus (IFG)16,17;
articulation in sensorimotor cortex (SMC)18; feedback in superior tem-
poral gyrus19 (and visual cortices for sign languages20); grammatical
features in middle temporal lobe (MTL)21, and semantics distributed
bilaterally throughout cortex22. Early production models held that these
representational “stages” come online in a strictly feedforward sequence,
starting with meaning and ending with articulation (and perception from
sensory feedback)23–25. However, these models struggled to explain a
range of phenomena like speech errors stemming from phonological
similarity (e.g., saying rat instead of cat). Subsequent models, therefore,
introduced an interactive architecture, allowing for bidirectional activa-
tion between stages of representation26–28. More recently, experimental
work has revealed that semantic and phonological information come
online at roughly the same time29,30, calling into question the notion of
stages and leading to the development of models where representations
come online in parallel31,32.

In contrast to the wealth of knowledge the field has accumulated about
single word production, relatively little is known about the type of speech
that is unique to our species: sentences33–35. Increasingly, researchers are
overcoming the obstacles to studying sentence production with non-
invasive neuralmeasures (e.g.,17,33–47).Many of these studies have focused on
the relationship between language production and comprehension,
revealing extensive overlap in frontal, temporal, and parietal areas, with
additional recruitment of domain-general control regions for
production33,39,40,43,47 (see48 for a meta-analysis). Others have examined
combinatorial processing10,35,47,49,50, revealing that sentence production
engagesmore of the language network – and to a greater extent – thanword
production47. This research has begun to converge on left anterior temporal
lobe (ATL) as a hub for composition50–52, left posterior temporal lobe (PTL)
as encoding hierarchical syntax35,53,54 and guiding lexical selection55–57, and
left inferior frontal gyrus (IFG) as responsible for coordinating complex
linguistic representations to generate a motor code10,16,35. Despite these
advances, few studies have aimed to directly leverage our understanding of
word production to study sentence production. One pressing question,
then, is the extent to which the principles of word production generalize to
sentences. That is, understanding the processes underlying picture naming
only shed light on human cognitionmore broadly insofar as these processes
generalize to more naturalistic language use. However, there is very little
evidence supporting this assumption. Here, we address this gap, scaling up
from words to sentences by directly testing the hypothesis that the
mechanisms underlying single-word production generalize to more com-
plex linguistic behaviors.

To do so, we identified the unique cortical activity patterns that encode
six particular words during a picture naming task. We then asked whether
these cortical representations are the same for words in list and sentence
contexts. By recording electrical potentials directly from the cortical surface
in tenneurosurgical patients (ECoG),we achievedhigh spatial and temporal
resolution and avoided motor artifacts, bypassing limitations of traditional
non-invasive neural measures. We employed a controlled production
experiment and sophisticated machine learning techniques, and asked
whether words’ cortical representations are shared across different types of
language production behaviors.Wehypothesized thatword representations
would in fact generalize across tasks, but expected that these representations
might vary in their temporal dynamics according to task demands. In
particular, we expected that in sentences that convey the same event
meanings but with different word orders (actives and passives), we should
see diverging temporal dynamics in word planning, as event encoding
processes remain the same, but grammatical encoding and articulatory
processes differ.

Methods
The data in this study were also reported in Morgan et al. (2024), where
many of the details below are repeated. The analyses reported in this article
were not pre-registered.

Participants
We recorded data from ten neurosurgical patients undergoing evaluation
for refractory epilepsy (according to clinical records: 3women, 7men,mean
age: 30 years, range: 20 to 45). All ten were implanted with electrocortico-
graphic grids and strips. Patients provided informedconsent both inwriting
and then again orally prior to the beginning of the experiment. The
implantation and location of electrodes were guided solely by clinical
requirements. Eight participants were implanted with standard clinical
electrode gridwith 10mmspaced electrodes (Ad-TechMedical Instrument,
Racine,WI). The remaining twoparticipants consented to a research hybrid
grid implant (PMT corporation, Chanhassen, MN) that included 64 addi-
tional electrodes between the standard clinical contacts (with overall 10mm
spacing and interspersed 5 mm spaced electrodes over select regions),
providing denser sampling but with positioning based solely on clinical
needs. Participants were compensated at a rate of 20 USD per hour for
participation. The research study protocol was approved by the NYU
Langone Medical Center Committee on Human Research.

Data collection and preprocessing
Participants were tested while resting in their hospital bed in the NYU
Langone epilepsy monitoring unit. Stimuli were presented on a laptop
computer screen positioned at a comfortable distance from the participant.
Participants’ voices were recorded with a cardioid microphone (Shure
MX424). The experiment computer generated inaudible TTL pulses
marking the onset of a stimulus. These were recorded in auxiliary channels
of both the clinical Neuroworks Quantum Amplifier (Natus Biomedical,
Appleton, WI), which records ECoG, and the audio recorder (Zoom H1
HandyRecorder). Themicrophone signal was also fed to the audio recorder
and the ECoG amplifier. These redundant recordings were used to sync the
speech, experiment, and neural recordings.

The standard implanted ECoG arrays consisted of 64 macro-contacts
(2mmexposed, 10mmspacing) in an8×8grid.Hybrid grids contained128
electrode channels, including the standard 64 macro-contacts plus 64
additional interspersed smaller electrodes (1 mm exposed) between the
macro-contacts (providing 10 mm center-to-center spacing between
macro-contacts and 5 mm center-to-center spacing between micro/macro
contacts, PMT corporation, Chanhassen, MN). The FDA-approved hybrid
grids were manufactured for research purposes, which we explained to
patients during consent. In all ten patients, ECoG arrays were implanted on
the left hemisphere. The location of the grid was solely dictated by
clinical needs.

ECoGwas recorded at 2048 Hz, which was decimated to 256 Hz prior
to processing and analysis. We excluded electrodes with artifacts (i.e., line
noise, poor contact with the cortex, and high amplitude shifts) or with
interictal/epileptiform activity prior to subtracting a common average
reference (across all valid electrodes and time) from each individual elec-
trode. We then extracted the envelope of the high gamma component (the
average of three evenly log-spaced frequency bands from70 to 150Hz) from
the raw signal with the Hilbert transform.

The signal was epoched locked to stimulus (i.e., cartoon images) and
production onsets for each trial. The 200 ms silent period preceding sti-
mulus onset (during which patients were not speaking and fixating on a
cross located at the center of the screen) was used as a baseline, and each
epoch for each electrode was z-scored (i.e., normalized) to this baseline’s
mean and standard deviation.

Experimental design
Procedure. The experiment was performed in a single session that lasted
approximately 40 minutes. Stimuli were presented in pseudo-random
order using PsychoPy58. All stimuli were constructed using the same 6
cartoon characters (chicken, dog, Dracula, Frankenstein, ninja, nurse),
chosen to vary along many dimensions (e.g., frequency, phonology,
number of syllables, proper vs. common, etc.) to facilitate identification of
word-specific information at analysis.
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The experiment had a blocked design. Blocks were ordered in terms of
importance to ensure that themost valuable datawas collectedfirst, in case a
patient ceased participation mid-way through (e.g., due to discomfort,
fatigue, or seizure activity). The experiment began with two short famil-
iarization blocks. In the first block (6 trials), participants saw each of the six
cartoon characters once with labels (chicken, dog, Dracula, Frankenstein,
ninja, nurse) written beneath the image. Participants read the labels aloud,
after which the experimenter pressed a button to go to the next trial. In the
second block, participants saw the same six characters one at a time, twice
each, with order pseudo-randomized (12 trials), but without labels. Parti-
cipants were instructed to name the characters out loud. After naming the
character, the experimenter pressed a button, revealing the target name to
ensure patients had learned the correct labels. Participants then completed
the first picture naming block (96 trials). Characters were again presented in
the center of the screen, one at a time, but no labels were provided.

Next, participants performed a sentence production block (60 trials),
which began with two practice trials. Participants were instructed that there
were no right or wrong answers, that the goal of the experiment was to
understand what the brain is doing when people speak naturally. On each
trial, participants saw a 1 s fixation cross followed by a written question,
which they were instructed to read aloud, ensuring attention. After another
1 s fixation cross, a static cartoon vignette appeared in the center of the
screen depicting two of the six characters engaged in a transitive event (one
character acting on theother). Participantswere instructed to respond to the
question with a description of the vignette. The image remained on the
screen until the participant completed their response, at which point the
experimenter pressed a button to proceed. After the first 12 trials, the target
sentence (i.e., an active sentence after an active question or a passive sen-
tence after a passive question) appeared in text on the screen, and partici-
pants read it aloud.We described these target sentences as “the sentence we
expected you to say.” The goal of this was to implicitly reinforce the link
between the syntax of the question and the target response. If the participant
appeared to interpret these as corrections, the experimenter reminded them
that there were no right or wrong answers.

Between each sentence production trial, we interleaved two picture
naming trials, which were demonstrated to reduce task difficulty and
facilitate fluent sentence production during pilot testing. The picture
naming trials showed the two characters that would be engaged in the
subsequent vignette, presented in a counterbalanced order such that on half
of the trials they would appear in the same order as in the target sentence
response, and in the opposite order on the other half.

After the sentence block, participants performed the listing block. The
list production block was designed as a secondary control condition in the
original study59, and as such it was ordered last. List production was
designed to parallel sentence production. Each trial beganwith a 1 s fixation
cross, followed by an arrow pointing either left or right appeared for 1 s in
the center of the screen. After another 1 s fixation cross, a cartoon vignette,
taken from the exact same stimuli as in the sentence block, appeared on the
screen. Participants named the two characters in the vignette either from left
to right or from right to left, according to the direction of the preceding
arrow. As in sentence production trials, each list production trial was pre-
ceded by two picture naming trials.

Between each block, participants were offered the opportunity to end
the experiment if they did not wish to continue. One participant stopped
before the list production block, providing only data for picture naming and
sentence production. The remaining nine participants completed all three
blocks. These nine were also offered the opportunity to complete another
picture namingblock and another sentence productionblock. Six consented
to an additional picture naming block, and two additionally consented to
another sentence production block.

Stimulus design, randomization, and counterbalancing. Picture
naming stimuli consisted of images of the 6 characters presented in
pseudorandom order so that each consecutive set of 6 trials contained all
6 characters in random order. (The images of our stimuli in this

manuscript were created by the authors for publication purposes, and,
while in the same style as the experimental stimuli, are not the images
used in the experiment.) This ensured a relatively even distribution of
characters over time, and that no character appearedmore than two times
in a row. Characters were pseudorandomly depicted in 8 orientations:
facing forward, backward, left, right, and at the 45° angle between each
of these.

Sentence production stimuli consisted of a written question followed
by a static cartoon vignette. Questions were manipulated so half were
constructedwith passive syntax and the other half with active. All questions
had the format: “Who is [verb]-ing whom?” or “Who is being [verb]-ed by
whom?”. There were 10 verbs: burn, hit, hypnotize, measure, poke, scare,
scrub, spray, tickle, trip. Each verb was used to create 3 vignettes involving 3
characters in a counterbalanced fashion so that each character was the agent
(i.e., active subject) in one vignette and the non-agent (i.e., active object) in
one vignette. Each of these three vignettes was shown twice in the sentence
production block, oncepreceded by an active question andonceby a passive
question, priming active and passive responses60,61. Vignettes were flipped
around the vertical axis the second time they appeared so the character that
was on the left in the first appearance was on the right in the second
appearance. This was also counterbalanced so that on half of the trials in
each syntax condition (active/passive) the subject was on the left. List pro-
duction stimuli consisted of the same 60 vignettes, also pseudorandomly
ordered andcounterbalanced across conditions (i.e., arrowdirection) so that
(a) on half of trials the first character to be named appeared on the left, and
(b) on half of trials the first character to be named was the agent of the
depicted event.

Data coding and inclusion
Speech was manually transcribed and word onset times were manually
recordedusingAudacity62 to visualize the waveform and spectrogramof the
audio recording. Picturenaming trialswere excluded if thefirstworduttered
was not the target word (e.g., “Dracula – I mean Frankenstein”). Sentence
trials were excluded if the first word was incorrect (i.e., “Dracula” instead of
“Frankenstein,” regardless of active/passive structure) or if the meaning of
the sentence did notmatch themeaning of the depicted scene; no sentences
were excluded because the syntax did not match that of the prime question.
Sentences were coded as active or passive depending on the structure the
patient used, not the prime structure. Listing trials were excluded if the first
wordwas incorrect (“Dracula” instead of “Frankenstein”) or if the order did
not match that indicated by the arrow.

In analyses for the three trial types (picture naming, sentence pro-
duction, and list production), data from all patients who completed trials in
that block are included. Data fromone patient who did not complete the list
production block is not included in the list production analyses, and data
from 3 patients who produced 3 or fewer passive sentences during sentence
production blocks were not included in the analyses of passive sentences.

Electrode localization
Electrode localization in both subject space and MNI space was based on
coregistering a preoperative (no electrodes) and postoperative (with elec-
trodes) structural MRI (in some cases, a postoperative CT was employed
depending on clinical requirements) using a rigid-body transformation.
Electrodes were then projected to the cortical surface (preoperative seg-
mented surface) to correct for edema-induced shifts following previous
procedures63 (registration toMNI space was based on a nonlinearDARTEL
algorithm). Based on the subject’s preoperative MRI, the automated Free-
Surfer segmentation (Destrieux) was used for labeling electrodes’ within-
subject anatomical locations.

Significance testing and corrections for multiple comparisons in
time series data
Statistical tests on time series data were performed independently at each
time sample, producing the same number of test statistics as there
are samples in the time series. To correct for multiple comparisons we
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follow59,64,65 and establish a conservative criterion for significance for all time
series comparisons: an uncorrected p-value that remains below .05 for at
least 100 consecutive milliseconds or below .01 for at least 50 consecutive
milliseconds. For Bayes Factor (BF) analyses of time series (Fig. 1C), bars
denote where BF≥3 for at least 100 consecutivemilliseconds (a Bayes Factor
of 3, or log10(BF) of .477, is standardly interpreted as moderate evidence for
the alternate hypothesis66). All analyses involved accurate assumptions
about the data, using non-parametric tests where assumptions of normality
were violated or unsupported.

Multi-class classification
For the classification analyses, we trained multi-class classifiers on word
identity using the caret andnnetpackages67,68 inR69. Classifiers consisted of a
series of one-vs-rest logistic regressions (fit as a neural network), whichwere
chosen for their simplicity and interpretability. For the picture naming
analyses, we used a repeated cross-fold validation procedure (3 repeats, 10

folds) to calculate prediction accuracy, and arbitrarily chose a mid-range
valueof 10−3 for decay, the lonehyperparameter in thismodel (typical values
are logarithmically spaced along the range from 10−6 to 100). For the sub-
sequent analyses of list and sentence production data, we first performed
repeated cross-validation on the picture naming data again to find the
optimal hyperparameters for each individual classifier, and then retrained
each model with that hyperparameter and using all of the picture naming
trials (rather than a training subset). We then used this model to predict
word identity at every time point throughout each trial in the list and
sentenceproductionblocks. Prediction accuracy time series reflect themean
of the binary accuracy scores across sentence production trials separately for
the subject and the object (which on different trials were different combi-
nations of the six nouns, e.g., Dracula, dog, etc.), smoothed with a 100 ms
boxcar function. To generate the noise distribution (gray shaded area), we
performed a permutation analysis, shuffling labels on the test data and
repeating the prediction analysis 1000 times.Wedetermined significance by

Fig. 1 | Experiment design and task-specific response profiles. A Task design: In
sentence production trials, participants described static cartoon scenes in response
to preceding questions. Scenes involved two of the six characters used throughout
the experiment (chicken, dog, Dracula, Frankenstein, ninja, nurse). Half of the
questions were manipulated to appear in active syntax (e.g., “Who hit whom?”),
implicitly priming active responses (“Dracula hit Frankenstein.”). The other half had
passive syntax (“Who was hit by whom?”), priming passive responses (“Franken-
stein was hit by Dracula”). In list production trials, participants saw an arrow
pointing to the left, in which case they listed the two characters in the subsequent
scene from right to left (“Dracula Frankenstein”), or to the right (“Frankenstein
Dracula”). In picture naming trials, the six characters repeatedly appeared one at a
time and participants responded with a word (e.g., “chicken”). BWe recorded

electrical potentials from 1256 electrodes (white dots) placed directly on the cortical
surface in 10 patients. We identified 7 regions of interest (ROIs) in the word pro-
duction literature. Line plots show the mean neural activity (z-scored high gamma
amplitude) and standard error per task and ROI, locked to speech onset (number of
electrodes per ROI: ATL = 67, IFG = 126, IPL = 75,MFG = 160,MTL = 78, PTL = 47,
SMC = 207). C A sample electrode: mean activity per word during picture naming
(top) and the amount of evidence (BF = Bayes Factor) for word-specific information
throughout picture naming trials (bottom; pink bar denotes where BF ≥3 for at least
100 consecutive milliseconds). Number of trials per word: chicken = 91, dog = 92,
Dracula = 66, Frankenstein = 77, ninja = 84, nurse = 86.DThemaximum amount of
evidence for word specificity during picture naming in each electrode in the four 150
ms windows leading up to speech onset (t = 0).
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calculating the upper 95th and 99th percentiles of the mean trial accuracies
generated by the permutation analysis for each time sample (see Section 2.6
for details on multiple comparisons corrections).

Temporal warping
The time between stimulus and speech onsets the planning period, varied
both across and within patients. Consequently, cognitive processes become
less temporally aligned across trials the farther one moves away from sti-
mulus onset in stimulus-locked epochs or from speech onset in speech-
locked epochs. Temporal warping reduces such misalignments70–74, which
we previously verified in this dataset59. Following59,73, we linearly inter-
polated the data in the middle of the planning period (from 150 ms post-
stimulus to 150 ms pre-speech) for each trial, setting all trials’ planning
periods to the sameduration (Supplementary Fig. S2): the globalmedianper
task (1141ms for sentences; 801ms for lists; 758ms for words). Specifically,
for each task, we first excluded trials with outlier response times, which we
defined as those in the bottom 2.5% or top 5% per participant. We then
calculated median response times per task across participants (1142 ms for
sentences, 801ms for lists, and758ms forwords), and for each electrode and
each trial, concatenated (a) the stimulus-locked data from 150 ms post-
stimulus to 1

2 themedian response time with (b) the production-locked data
from � 1

2 median response time to 150 ms pre-speech. We then linearly
interpolated this time series to thenumber of time samples thatwould,when
concatenated between the 150 ms post stimulus (stimulus-locked) and 150
ms pre-speech (speech-locked), result in a time series with the median
planning period duration. Finally, we concatenated (a) the unwarped data
leading up to 150 ms post-stimulus, (b) the warped data from the previous
step, and (c) the unwarped data starting 150 ms before speech onset,
forming the final epochs used in the analyses. We direct the reader to
Morgan et al. 2024 for a fuller discussion and demonstration that this
temporal warping increased signal-to-noise ratio in this dataset, as well as
analyses of the unwarped high gamma activity across regions of interest.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
We analyzed an existing dataset (first reported in ref. 59), in which ECoG
was recorded from ten neurosurgical patients with electrodes implanted in
left peri-Sylvian cortex. Patients performed an overt speech production
experiment involving the production of the same six words in three tasks:
picture naming, list production, and sentence production. In picture
naming trials, patients repeatedly saw andnamed six cartoon characters one
at a time. To maximize discriminability, these characters – chicken, dog,
Dracula, Frankenstein, ninja, and nurse – differed along a number of
dimensions (phonology, number of syllables, proper vs. common noun; see
Supplementary Fig. S1). During sentence production, patients overtly
described cartoon vignettes depicting transitive actions (e.g., poke, scare,
etc.) in response to a preceding question. Questions were constructed using
either active syntax ("Who poked whom?”) or passive syntax ("Who was
poked by whom?”), implicitly priming patients to respond with the same
structure ("The chicken poked Dracula” or “Dracula was poked by the
chicken”)60,61. Finally, patients completed a list production task, where the
same vignettes as in the sentence production trials were preceded by an
arrow rather than a question, indicating the direction in which participants
should list the two characters in the scene: left-to-right (e.g., “chicken
Dracula”) or right-to-left ("Dracula chicken”).We quantified neural activity
as high gamma broadband activity (70–150 Hz), normalized (z-scored) to
each trial’s 200 ms pre-stimulus baseline, which correlates with underlying
neuronal spiking and BOLD signal75,76.

Neural activity and word specificity
We began by looking at the mean neural activity for each task in seven
regions of interest (ROIs), which have previously been implicated in word

production14,15. Prior to this and subsequent analyses, we followed previous
work59,70–74 and temporally warped all trials, setting response times to the
median trial duration for each task (−758ms for picture naming,−1141ms
for sentence production, and−801ms for list production (seeMethods and
Supplementary Fig. S2). This boosts signal-to-noise ratio59,73 and tempers
extraneous differences. ROIs showed a variety of temporal patterns
(Fig. 1B), with the highest levels of activity across tasks achieved in sen-
sorimotor cortex (SMC) during articulation.However, not all of this activity
reflects word processing, as various general systems like attention and
working memory are also involved in speech production. Notably, many
electrodes showed distinct temporal profiles for certain words (e.g., Fig. 1C,
top). We quantified the amount of evidence for word specificity in each
electrode using Bayesian ANOVAs (Fig. 1C, bottom); positive values indi-
cate more evidence for word-specificity). This information was broadly
distributed across cortex, increasing from stimulus onset to speech onset
(Fig. 1D; see Supplementary Fig. S3 for each word’s unique network).

Decoding words during picture naming
Tomore accurately identify word-specific activity patterns, we performed a
series of decoding analyses77,78 on the picture naming data. In essence, this
analysis (schematized in Fig. 2A) learns the unique pattern of activity for
each word in a “training” subset of picture naming trials (90% of trials).
Then, it predicts which of the six words a patient is saying in the withheld
“test” trials (10%) by assessing how similar each trial’s activity pattern is to
each of the six learned patterns. If a test trial’s activity pattern ismost similar
to, e.g., the “chicken” pattern, the classifier will predict that the patient said
“chicken.” This would be scored a 1 if the patient was in fact saying
“chicken,” and 0 otherwise. By repeating this process for every time sample
in every trial, and for 30 combinations of train and test data parcellations
(i.e., 10-fold cross validation repeated three times; see Methods), we cal-
culated the mean prediction accuracy over time.

We repeated this analysis for each patient and for each ROI. Addi-
tionally, because words pass through distinct representational stages (e.g.,
conceptual, phonological, etc.)14,15,23,25, the time frame of the training data
was consequential. For instance, if we trained the model on just data from
t = 0 (speech onset), we would likely detect articulatory information and
miss semantic, phonological, and grammatical aspects of lexical repre-
sentation.Toavoid this,we spanned time, trainingmodels on themeanhigh
gamma activity in each 50 ms window from−750 ms to 250 ms relative to
speech onset. In all, this resulted in 1280 classifiers: 10 patients × 7 ROIs ×
20 training time windows (minus ROIs where patients had insufficient
electrode coverage).

Figure 2B shows the prediction accuracies from three sample
classifiers. These classifiers predicted word identity above chance
(pink highlights; Permutation Tests, p < 0.05 for 100 ms or p < 0.01
for 50 ms) both before and after their respective training windows
(black bars), revealing that whatever information our classifiers
encode comes and stays online for longer than 50 ms. In Fig. 2C, we
plot the maximum accuracy of all classifiers in each region (across
patients and training windows), revealing that word identity can be
decoded above chance in all seven ROIs (see Supplementary Fig. S4
for all results by ROI). In Fig. 2D, we stacked the time series (like
those in Panel B) from all 444 classifiers with significant prediction
accuracies (pink highlights). This revealed several patterns. First, the
closer a training window (black bar) was to articulation (starting at
time 0), the better the decoding, possibly reflecting a higher signal-to-
noise ratio for articulatory representations than for earlier stages.
Second, training times (black) and significant prediction times (pink)
tended to overlap, suggesting that the time course of representational
stages is relatively consistent across picture naming trials. Finally,
almost regardless of training time, most classifiers were able to
decode above chance at speech onset (t = 0). This suggests that pre-
articulatory representations stay online at least until speech onset,
and post-articulatory representations are engaged throughout
production.
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Generalization of word representations from picture naming to
word lists
To assess whether words have the same cortical representations in pic-
ture naming and list production, we tested the generalizability of the
picture naming classifiers. We followed the same analysis pipeline
depicted in 2A. However, instead of training and testing on subsets of the
picture naming data, we used all of the picture naming data to train

classifiers, and then used these classifiers to predict word identity during
the production of lists like “Dracula Frankenstein.” The plots in Fig. 3A
demonstrate results from a sample region, the sensorimotor cortex,
showing the proportion of trials where SMC classifiers predicted the first
word (left; “Dracula,” in our example) and the second word (right;
“Frankenstein”). Accuracies are time-locked to the onset of the first word
in the left panel and the second word in the right. These sample results

Fig. 2 | Word-specific information in picture naming. A Schematic of the analysis
pipeline with simulated data. For each patient and region of interest (ROI), we
trained a classifier on word identity using the time-averaged picture naming data
from a 50 ms-window (−600 to−550 ms in the example; black rectangle). We then
predicted word identity in “test” trials that were not in the training data, coding
predictions as correct (1) or incorrect (0) for each test trial (row) at each time sample
(column), generating amatrix of prediction accuracies (red).We repeated this for 30
train/test data parcellations (i.e., 10-fold validation, repeated 3 times), and averaged
the resulting prediction accuracies across trials to calculate accuracy over time
(bottom). A permutation analysis generated 1000 results reflecting chance perfor-
mance, and significance was determined with respect to this distribution (gray). This
whole process was performed for each patient, each ROI for which a patient had
coverage, and each of the 20 trainingwindows spanning−750 to 250ms, resulting in
a total of 1280 classifiers. B Prediction accuracies for three sample classifiers with

significant predictions (pink highlights; Permutation Tests, p < 0.05 for 100 ms or
p < 0.01 for 50ms). From top to bottom, training and test data came from (1) Patient
9, PTL, −350 to −300 ms (n = 513 trials); (2) Patient 6, SMC, −200 to −150 ms
(n = 331 trials); and (3) Patient 5, IFG, −150 to −100 ms (n = 402 trials). C Each
ROI's maximum prediction accuracy across classifiers; bars denote significance
(Permutation Tests, p < 0.05 for 100 ms or p < 0.01 for 50 ms). (See Supplementary
Fig. S4 for results by ROI.)DPrediction accuracies from the 444 classifiers thatmade
significant predictions, stacked vertically to highlight the time course of word-
specific information in picture naming. Each horizontal line corresponds to one
classifier. Pink denotes where that classifier’s accuracy was above chance. Black bars
represent the time window of training. The pink curve at the bottom shows the
density of significant predictions, revealing that the most significant decoding
occurred at speech onset (t = 0).
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come from classifiers trained on data from SMC between 50 and 100 ms
after speech onset during picture naming, and averaged across partici-
pants. Blue highlights denote above-chance prediction of the first word
and green highlights of the second word (Permutation Tests, p < 0.05 for
100 ms or p < 0.01 for 50 ms). We accurately predicted each word as it is
being said – e.g., Dracula when the patient said Dracula and then
Frankenstein when the patient said Frankenstein. Prediction accuracies
from all 97 classifiers that significantly predicted one or both of the two
nouns in the list are stacked in Fig. 3B, revealing similar temporal
dynamics as in picture naming. The three temporal patterns we observed
in picture naming were largely preserved, though to a lesser degree. First,
the closer to speech onset the training data came from, the more sig-
nificant detections the classifier made. Second, significant prediction
times tended to overlap with training times, though this was less true for
classifiers trained on pre-articulatory data. Finally, significant prediction
times tended to overlap with speech onset, particularly for the second
word in lists, where many classifiers showed above-chance accuracy
during articulation even when they failed to do so during their own
training time. Overall, these similarities to the picture naming results
(Fig. 2) suggest that list production may involve similar processes as
picture naming.

Generalization to sentences: Word processing in actives follows
order of articulation
There is reason to believe that sentences may behave differently. Whereas
word order in lists is linearly structured, word order in sentences is deter-
mined by words’ syntactic position in a hierarchical structure, which is in
turn based on a complex event-semantic representation. It stands to reason
that sentence productionmay involve fundamentally differentmechanisms
for accessing and producing words. To test this, we used the same classifiers
we trained for the list production analysis to predict word identity during
sentences. Like lists, each sentence contained two nouns: the subject and the
object, and we recorded the proportion of trials where classifiers predicted
each of these. We started by analyzing sentences with active syntax, e.g.,
“Dracula is hitting Frankenstein,” which, relative to non-canonical struc-
tures like the passive, are easier to process and better preserved in aphasic
patients45,79–82. Figure 4A shows the results from the same sensorimotor
classifiers previously shown for lists in Fig. 3A. For active sentences, we
decoded subjects and objects – Dracula and Frankenstein in the sample
sentence (but the particular words in subject/object position varied across
trials)–while eachwas being said (PermutationTests, p< 0.05 for 100ms or
p < 0.01 for 50 ms). Stacking the prediction accuracy time series from all 83
significant classifiers (Fig. 4C) revealed that this was a general pattern:
subjects and objects were predicted at their respective production times.

However, the order of the two nouns is confounded with their relative
salience in the event in active sentences. That is, the character performing
the action is the subject and comes first, and the character being acted upon
is the object and comes second. It may, therefore, not be entirely surprising
that the brain processes words in active sentences in the order that they are
produced.Wewonderedwhether this patternwas generally true of sentence
production, or only truewhenword order alignswith salience. A potentially
interesting test case is the English passive (e.g., “Frankenstein is being hit by
Dracula”), which involves reversing the order of nouns – i.e., producing the
character being acted upon first, and the character doing the action second.
Onhalf of the sentence production trials, we primed patients with questions
formed with passive syntax ("Who was hit by whom?”) rather than active
syntax. This successfully elicited amix of active and passive utterances from
patients. Consistent with previous findings61, active primes were more
successful in eliciting actives (96.93% of trials) than passive primes were in
eliciting passives (49.15%). A mixed-effects logistic regression modeling
passive production as a function of prime syntax revealed that passive
primes did indeed result in more passive responses than active primes
(β = 4.242, z = 9.506, p < 0.001, effect size (log-odds) = 4.242, 95% Con-
fidence Interval (CI) = [3.367, 5.117]; model converged with a random
intercept for patient).

Sustained, simultaneous encoding of words in passive
sentences
Because passive sentences convey the samemeanings as actives but with the
order of the nouns reversed, they present an opportunity to disentangle
serial order and salience. Specifically, if the reason we decoded subjects
before objects in active sentences was solely because subjects were more
agentive, then we should expect to see the temporal dynamics of word
processing reverse in passives. We started by examining prefrontal regions.
Prefrontal cortex has previously been shown to involve higher activity for
passives than actives83–88, but the precise reason for this remains debated45.
Figure 5A shows the mean decoding accuracy in MFG during passive
sentences, and indeed reveals a distinct temporal profile from what we
observed for actives: sustained encoding of the object throughout the
duration of the sentence (Permutation Tests, p < 0.05 for 100ms or p < 0. 01
for 50ms), starting even before the onset of the sentence. However, this was
not true everywhere in cortex during passive sentences. Figure 5B shows the
predictions of the same sensorimotor classifier from Fig. 4A. In this region,
responsible for articulation and sensory feedback, words were decoded as
theywere in actives: in the order inwhich theywereproduced.To look at the
overall pattern, we stacked the predictions from all 97 classifiers that made
above-chance predictions (Fig. 5C; for a breakdown by ROI see

Fig. 3 | Predicting words in lists using picture naming data. A Sample prediction
accuracies for the first and second nouns in lists (e.g., “Dracula” and “Frankenstein”
in the example) from classifiers trained on picture naming and tested on lists. The
significant detections of the two nouns in the list are evidence of words' common
cortical representations across tasks. Training data came from electrodes in SMC
(highlighted on brain) between 50 and 100 ms post-speech onset (denoted by black
bar) and the resulting prediction accuracies were averaged across n = 10 patients.
Significant prediction accuracy is highlighted in blue for the first word and green for
the second. B Prediction accuracy time series (like those in Panel A) from the 97
significant classifiers for lists, stacked vertically to highlight temporal patterns in
word-specific information during list production. In this and subsequent stacks of
prediction accuracies, each time series (horizontal line) corresponds to the same
classifier across the left and right panels. Blue highlights show where a classifier
predicted the first noun above chance; green for the second noun. Black bars denote
the time window the training (picture naming) data came from. Blue and green
density plots at the bottom summarize the significant predictions. As with picture
naming decoding (Fig. 2D), themost significant detections of eachword happened at
that word’s articulation onset.
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Fig. 5 |Word decoding results for passive sentences. AMean prediction accuracies
for passive sentences from MFG classifiers trained on picture naming data from
−600 to−550ms (n= 10 patients). This prefrontal region sustained a representation
of the object throughout the sentence. BMean prediction accuracies for passive
sentences from the same SMC classifier in Fig. 4A (and Fig. 3A) (n = 10 patients). As
in these previous analyses, this classifier detected each noun during its respective
articulation. C Stacked prediction accuracies from the 97 significant classifiers for
passive sentences, locked to each noun’s onset. Unlike in active sentences, there is
little correspondence between training time (black bars) and when words were
detected (green and blue segments). This point ismade especially clear by the density
plots, which reveal that both subjects and objects were active throughout passive
sentence production.DNumber of classifiers that significantly predicted either word
in the sentence, broken down by whether the prediction revealed temporally

congruent processing (i.e., detection of the subject during production of the subject
or detection of the object during the object) or incongruent (detection of the object
during the subject or vice versa). Error bars reflect 95% CIs on detection counts,
computed by applying the Wilson score interval to the underlying binomial
proportions 107 and scaling the resulting bounds by the number of classifiers
(n = 1280). While both active (black) and passive (gray) sentences involved tem-
porally congruent word processing, passives had significantly more incongruent
detections than actives for both incongruent subjects and incongruent objects. Pie
charts show where these incongruent detections were made: incongruent passive
subjects were detected in IFG more than any other ROI (8 out of n = 12 classifiers),
whereas incongruent passive objects were found inMFG (13 out of n = 34 classifiers;
see Supplementary Fig. S5 for more detail).

Fig. 4 | Decoding words in active sentences using picture naming data. A Sample
prediction accuracies for the first and second nouns (i.e., subject and object) of active
sentences, locked to the onset of each word. This was the same classifier as in Fig. 3A,
i.e., trained on picture naming data from electrodes in SMC between 50 and 100 ms
(black bar) after speech onset (averaged across all n = 10 patients). Both nouns were

predicted above chance at the time of their respective articulations (blue/green
highlights). B Stacked prediction accuracies from the 83 significant classifiers for
active sentences, locked to the onset of both nouns. Density plots at the bottom show
that each word’s accuracy peaked during its articulation. (See Supplementary Fig. S5
for density plots broken down by ROI).
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Supplementary Fig. S5). This analysis revealed that in passives, both the
subject and object remained active throughout the entirety of the sentence,
indicating that the brain processes both characters in the sentence simul-
taneously rather than sequentially. To assess whether this constituted a
statistically significant difference from active sentences, we counted the
number of classifiers that detected eachword during the production of each
word (Fig. 5D) – i.e., the number of classifiers that detected the subjectwhen
the subject was being said or the object when the object was being said –
“congruent” detections – and the number of classifiers that detected the
object when the subject was being said or the subject when the object was
being said – “incongruent” detections. In both active and passive sentences
we observed many congruent detections (Fig. 5D, left).

However, of the incongruent detections (Fig. 5D, right), nearly all were
in passive sentences. Relative to active sentences, passive sentences involved
significantly more incongruent detections of both subjects (one-sided Test
of Equal Proportions, χ2(1) = 10.132, FDR-corrected p < 0.001, difference in
proportions = 0.010, 95% CI = [0.004, 1]) and objects (one-sided Test of
Equal Proportions, χ2(1) = 24.687, FDR-corrected p < 0.001, difference in
proportions = 0.025, 95%CI = [0.016, 1]). (The Test of Equal Proportions
was chosen due to the bounded nature of the counts, which were between 0
and 1280, or the total number of classifiers. Note that pairwise tests were
onlyperformedwhere thenumber of detectionswashigher forpassives than
actives because the reverse pattern is uninterpretable: active analyses having
roughly three timesmore data than passives, statistical powerwas higher for
actives, meaning that the higher number of active detections is likely trivial.
On the other hand, the significantly higher number of incongruent detec-
tions for passives than actives, in spite of passives’ lower power, lends extra
credibility to those effects.)

This incongruent noun representation in passive sentences was driven
by two regions (see pie charts and Supplementary Fig. S5): IFG, which
preferentially encoded subjects more than any other region (one-sided Test
of Equal Proportions, χ2(1) = 23.000, FDR-corrected p < 0.001, difference in
proportions = 0.041, 95% CI = [0.012, 1]), and MFG, which preferentially
encoded objects (one-sided Test of Equal Proportions, χ2(1) = 11.421, FDR-
corrected p< 0.001, difference in proportions = 0.045, 95%CI = [0.013, 1]).
Notably, no such regional specificity was observed in active sentences. A
Bayesian ContingencyAnalysis89 revealed substantial evidence against role-
specific encoding during active sentences in prefrontal cortex, with a Bayes
Factor of 0.029 for IFG (i.e., 34.126 times more evidence for the null
hypothesis that there is no role-specific encoding) and0.042 inMFG(23.672
times more evidence for the null).

Strikingly, even when patients were producing the subject of a passive
sentence, we detected numerically more objects (i.e., incongruent detec-
tions) than subjects (congruent), although this difference was only mar-
ginally significant (χ2(1) = 2.210, p = 0.069, difference in proportions
= 0.010, 95% CI = [ −0.001, 1], one-sided Test of Equal Proportions). In
summary, our decoding analysis revealed a marked difference in lexical
processing between active and passive sentences. While actives exhibit a
pattern similar to that in list and single word production, where words are
activated in the order they are produced, passive sentences involve sus-
tained, simultaneous encoding of both the subject and object nouns. This
difference was region-specific, with sensorimotor cortex consistently
representing lexical information in task-agnostic ways, but IFG and MFG
showing sensitivity to syntactic structure, highlighting a division of labor
within the language network where prefrontal regions support structure-
dependent processing demands.

Discussion
Single word production tasks like picture naming have dominated the
neuroscience of language production, but there is little direct evidence for
the critical assumption thatwhat is true ofwords in isolation remains true in
more naturalistic utterances like sentences. In this study, we leveraged the
unparalleled spatiotemporal precision of ECoG and employed an innova-
tive cross-task classification approach to assess the similarities and differ-
ences in the production of words and sentences.We first demonstrated that

individual words can be decoded from patterns of neural activity in picture
naming data, confirming that our data contained word-specific informa-
tion.We then trained classifiers to identifywords in seven regions of interest
and at 20 time points spanning the picture naming epoch. Applying these
classifiers to sentence production data revealed three key findings. First, we
successfully decoded nouns during sentence production using picture
naming data, validating the assumption that word representations are
shared across linguistic behaviors. Second, by comparing word decoding
results between sentences with active vs. passive syntax, which convey the
same event meanings but with nouns in reverse orders, we demonstrated
that the temporal dynamics of word processing depend on syntactic
structure. In active sentences, which represent the canonical word order in
English and typically involve producing nouns in order of agency (from
most agentive to least), there was a tight correspondence between word
processing in the brain and word order in speech: classifiers decoded the
subject and object nouns in the order they were produced. In contrast,
passive sentences showed a significant departure from this temporal
alignment: rather than encoding eachword as it was said, the brain encoded
both words simultaneously for the duration of the sentence. Third and
finally, our data revealed a spatial code in prefrontal cortex for words’
syntactic position, with subjects preferentially encoded in IFG and
objects in MFG.

Syntax-dependent dynamics of word processing
Our findings validate various aspects of cognitive90–92 and computational93,94

models of sentence production. These models assume that word repre-
sentations are invariant across different behaviors, which is reflected in our
finding that the cortical representation of words during picture naming
generalizes to both list and sentence contexts. Furthermore, these models
build in a dependence on syntactic structure during sentence planning,
predicting that the dynamics of word processing may vary with syntactic
structure. Consistent with this, we observed striking differences between
active and passive sentences: in actives, the subject and object were decoded
sequentially in the order in which they were produced, whereas in passives
we continuously decoded both nouns throughout the duration of the sen-
tence. This sustained representation was driven by activity in IFG and MFG,
aligning with prior experimental83–85, stimulation86, and lesion-symptom
mapping studies87,88 implicating these prefrontal regions in the processing of
noncanonical structures like passives.

The role of prefrontal cortex in sentence production
There is ongoing debate regarding the specific functions of IFG andMFG in
passives. While we have attributed these differences to “syntax,” they could
in principle derive from other differences between actives and passives. The
literature identifies a number of such extraneous differences: working
memory95, thematic role assignment84, and syntactic movement (a syntactic
operation associatedwith certain complex structures83,85,87). However,much
of this prior work relies on measures like “activity,” which do not directly
map onto specific psychological processes or representations, complicating
efforts to discern among these possibilities. By tracking word-specific
information, our findings reveal at least one function of IFG and MFG in
passives: the sustained encoding of words and their syntactic roles. This
finding poses a challenge for the syntacticmovement account, asmovement
pertains to abstract structure rather than specific words96,97. Similarly, the
thematic role assignment hypothesis is inconsistent with our results, as
thematic roles did not differ between actives and passives.

Of these three alternative possibilities, our results align most strongly
with a working memory (or perhaps attention) account. Passives likely
engage such cognitive resources to a higher degree, as they are less common
than actives, involve planning more words, and, in our stimuli, require the
reversal of the canonical agent-first ordering. We suspect that this latter
property ismost likely todrive the effect in ourdata given that IFGandMFG
encoded words according to their syntactic role in the sentence. Ongoing
access to information about which noun occupies which syntactic position
may be needed to override default syntactic processes, which would
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presumably favor mapping agents to subject, as in active sentences. Thus,
the sustained encoding of nouns in IFG and MFG may constitute a core
neural mechanism by which the brain exerts top-down control of speech,
enablingflexible sentenceproduction tomeet situational or taskdemands.A
workingmemory account further aligns with the fact that IFG andMFG sit
squarely within the multiple-demand network, a domain-general system
that supports cognitive resources like attention and working memory98–100.
While this explanation fits our findings better than the thematic role
assignment or syntactic movement accounts, it does not rule out the pos-
sibility that these regions additionally support other such functions. This is
particularly true in light of the fact that the relative contributions of
these functions may differ between production and comprehension,
meaning that our results may not be directly comparable to previous
comprehension work.

A spatial code for syntactic roles
Syntactic roles, or structural positions like subject andobject, are keyparts of
all models of language processing. They are necessary formappingwords to
semantic/thematic roles (i.e., who performs an action vs. who it is done to).
In production, these roles must be quickly and flexibly linked to specific
words so that, for example, “Dracula” can be the subject of one sentence and
the object of another in rapid succession without causing confusion (see
discussion of the “fast-changing weights” in Chang et al.’s 2006 computa-
tional model). Theoretical accounts often point to coherence as a possible
neural mechanism for this type of binding94,101, but there remains little
empirical evidence for this (or any) particular implementation. Here, we
uncovered a spatial code for syntactic roles during passives, with subjects
encoded in IFG and objects in MFG.

Two caveats, however, warrant consideration. First, while active sen-
tences also have subjects and objects, we found no evidence for role-specific
encoding in prefrontal cortex during actives (see Supplementary Fig. S5),
despite higher statistical power (patients produced approximately three
times more actives than passives). Indeed, Bayesian analyses revealed sub-
stantial evidence for a lack of regional specificity for syntactic roles in actives.
This suggests that the spatial code we observed is not the general neural
mechanism for encoding syntactic role (or linear position, whichever itmay
be). However, an alternative explanation is that the brain does not rely on
syntactic roles during the production of actives. Speakers may develop a
heuristic strategy for producing very common structures102, for instance,
something like “produce the more agentive noun first.” Indeed, previous
workhas shownthat sentenceproduction isnot alwaysdrivenbybottom-up
syntactic encoding in production, and can instead be driven by attention103

(see ref. 91 for discussion). The second caveat is that the absence of evidence
for position-specific encoding in actives limits our ability to disentangle
whether this feature of passives encodes syntactic roles or linear position.
Prior work has linked IFG to linear rather than hierarchical-syntactic
representations54, potentially indicating a linear position interpretation of
our results is a better fit. Further work is needed to conclusively tease apart
these possibilities.

Regardless, the pattern we observed for passives constitutes a clear
demonstration of a neural code for a noun’s position in a sentence, be it
linear or hierarchical. This important finding shows how a spatial organi-
zationof lexical information can anddoes encodepositional information for
words in sentences.

Limitations
Future work is needed to identifywhich lexical representations we detected.
Our stimuli, designed for different purposes, do not readily distinguish
between different types of lexical information. For example, an electrode
that selectively responds to “Dracula” and “Frankenstein” might reflect
semantic information (monsterhood) or form-level information, as both
words have stress on the first of three syllables. One approach to isolating
lexical representations could involve examining the spatial or temporal
distribution of lexical information. For instance, if different lexical repre-
sentations correspond to specific ROIs and come online in a feedforward

sequence during picture naming, then one would expect word-specific
information to first emerge in conceptual regions, then in lemma regions,
and so on. However, it remains an open question whether either of these
assumptions are valid. Spatially, there is growing consensus that at least
semantic knowledge is broadly distributed across cortex22, which, if true,
would mean that decoding in any ROI could be driven by semantic infor-
mation. Indeed, this could be true of other types of lexical representations as
well, where evidence is stronger for a more spatially concentrated code, but
still not a matter of certainty. Temporally, if parallel models of word pro-
duction are correct and lexical representations come online
contemporaneously30–32, then temporal patterns are also of limited use in
distinguishing between representations. But even under strictly feedforward
circumstances, our data reveal another complication: the signal-to-noise
ratio of different representations appears to change over time, leading to
potentially sizable differences between when a representation comes online
and when it is detected. Evidence for this is clearest in the picture naming
data (Fig. 1D), where words tended to be decoded around the onset of
articulation regardless of when the training data came from. This was
particularly true for earlier training times (the lower part of the “stack”plot),
wheremanyclassifiers successfully decodedwords around time0evenwhen
they were unable to do so at the time they were trained on. This points
toward a signal-to-noise ratio increase leading up to articulation, making
information easier to decode at articulation even if it came online much
earlier. Thus, we caution against directly interpreting the lack of decoding in
classifiers trained at earlier times, as false negatives are likely tobecomemore
frequent the earlier the training data come from.

Interestingly, there was one clear exception to this trend. Lexical
information in posterior temporal lobe (PTL) peaked far earlier than in
other ROIs (Supplementary Fig. S4B), consistent with evidence implicating
this region in phonological encoding, one of the earlier stages in feedforward
models of word production (see ref. 15 for a review). However, other work
has associated PTL with more general processes such as lexical access and
coordinating different types of information55–57, which would implicate
multiple levels of lexical representation. Thus, while there are suggestive
features of our data, ongoingdisagreements in thefield about the timecourse
and localization of lexical representations, combinedwith limitations of our
stimulus design, prevent us from answering these questions definitively.
Nonetheless, this study introduces an innovative approach to investigating
these issues – one that we anticipate will be instrumental in resolving these
questions in future research.

Word order typology aligns with neural costliness
Finally, we suggest that our findings may shed light on a widely noted but
poorly understood pattern among the world’s 6000 languages. Specifically,
there are six possible orders in which a language can arrange subjects, verbs,
and objects: Subject-Verb-Object (as in the English “I eat cake”), Subject-
Object-Verb (as in Farsi “man keikmikhoram,” literally “I cake eat”), and so
on. However, of these 6 logically possible word orders, fewer than 5% of
languages place objects before subjects (e.g.,Object-Subject-Verb)104,105. One
possible reason for this is that subjects tend to be more agentive (semanti-
cally salient) than objects, and there is a natural tendency in speech to order
words from most to least agentive (a bias apparently preserved across
hominids106). In our experiment, passive sentences provided an opportunity
to visualize how the brain processes words when producing less agentive
words before more agentive ones. In these cases, word planning involved a
much more complex temporal pattern. Indeed, whereas word planning in
actives resembled picture naming and lists, in passives the brain encoded
both the subject and the object for the duration of the sentence. This was
driven by sustained activation of both nouns in prefrontal cortex. Specifi-
cally, IFG sustained a representation of the subject, and MFG sustained a
representation of the object. Furthermore, reaction times, commonly
interpreted as an index of processing difficulty, were significantly longer for
passives than both actives and lists (see Section A.2.4 in Supplementary
Information). Taken together, these facts point toward a processing-based
explanation of the cross-linguistic dominance of subject-before-object word
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orders like those inEnglish andFarsi. Producingwords inorder fromleast to
most salient may simply be harder for the production system.We speculate
that, over the course of language evolution, this difficulty exerts a subtle
pressure on language change, making it more likely for languages to evolve
in the direction of subject-before-object word orders.

Data availability
Data will be made available from the authors upon request to the corre-
sponding author (Adam.Morgan@NYULangone.org), provided doc-
umentation that the data will be strictly used for research purposes and will
comply with the terms of our study IRB. Numerical data underlying the
manuscript figures are available on https://doi.org/10.17605/OSF.
IO/GEUTY.
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