
communications psychology Article
A Nature Portfolio journal

https://doi.org/10.1038/s44271-025-00269-8

Individuals with methamphetamine use
disorder show reduced directed
exploration and learning rates
independent of an aversive interoceptive
state induction

Check for updates

Carter M. Goldman 1,6, Toru Takahashi1,2,6, Claire A. Lavalley 1, Ning Li1, Samuel M. Taylor1,
Anne E. Chuning1, Rowan Hodson1, Jennifer L. Stewart1,3, Robert C. Wilson4,5, Sahib S. Khalsa 1,3,
Martin P. Paulus1,3 & Ryan Smith 1,3

Methamphetamine use disorder (MUD) is associated with substantially reduced quality of life. Yet,
decisions to use persist, due in part to avoidance of anticipated withdrawal states. However, the
specific cognitive mechanisms underlying this decision process, and possible modulatory effects of
aversive states, remain unclear. Here, 56 individuals with MUD and 58 healthy comparisons (HCs)
performed a decision task, both with and without an aversive interoceptive state induction.
Computational modeling measured the tendency to test beliefs about uncertain outcomes (directed
exploration) and the ability to update beliefs in response to outcomes (learning rates). Compared to
HCs, the MUD group exhibited less directed exploration and slower learning rates, but these
differences were not affected by the aversive state induction. Follow-up analyses further suggested
that reduced exploration in thosewithMUDwasbest explainedby greater avoidance of uncertainty on
the task, and that trait differences in cognitive reflectiveness might account for these differences in
task behavior. These results suggest state-independent computational mechanisms whereby
individuals with MUDmay have difficulties in testing beliefs about the tolerability of abstinence and in
adjusting behavior in response to consequences of continued use.

Methamphetamine use disorder (MUD) is characterized by biological,
cognitive, and behavioral changes that can be detrimental at both the
individual and societal level. Though outcomes vary widely, common
psychological consequences include psychosis, suicidality, hostility, anxiety,
depression, and psychomotor dysfunction1,2. Despite its growing prevalence
worldwide3, cognitive mechanisms governing the onset, maintenance, and
recurrence of MUD remain unclear.

One means by which MUD may be maintained is through the influ-
ence of expectednegative outcomes of abstinenceandassociatedwithdrawal
states, which can motivate avoidance when combined with negative rein-
forcement processes2. In particular, methamphetamine use may attenuate

symptoms of depression or somatic anxiety that are brought on or exa-
cerbated by withdrawal. Deficits in interoceptive processing may further
contribute to maladaptive behavior, as previous work has shown that
individuals with MUD exhibit attenuated neural responses (e.g., insula,
anterior cingulate cortex) to aversive somatic states4.Counteringwithdrawal
avoidance instead requires that individuals “test out” abstinence as a means
of learning whether they are capable of enduring its short-term con-
sequences to improve longer-term quality of life. In computational neu-
roscience, the abstract structure of this decision problem is captured by so-
called “explore-exploit” decision tasks5,6. In these tasks, one can either
exploit current (limited) knowledge tomaximize short-term reward, or one
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can first test the outcomes of different options (explore) to make better
informed choices in the long-term. Importantly, there are different
exploratory strategies, which depend on distinct computational processes,
and some may be more clinically relevant than others7–9. Directed
exploration (DE), for example, requires keeping track of one’s relative
uncertainty about different action outcomes, and then choosing the action
for which one has the greatest uncertainty, as this leads to the most infor-
mation gain. In contrast, so-called random exploration (RE) requires
keeping track of one’s total uncertainty across action options, where greater
total uncertainty should increase the chance of selecting options that do not
currently appear most rewarding, as one might learn that past experiences
weremisleading. In the example of withdrawal avoidancementioned above,
DE may be more relevant, as the individual must recognize that they have
greater uncertainty about the outcomes of abstinence than about those of
continued use. A diminished drive to resolve relative uncertainty could
therefore prevent attempts at abstinence and perpetuate the disorder. If it
were demonstrated that reduced exploration and sensitivity to uncertainty
were present, they could represent possible treatment targets in clinical
studies.

Several studies support this in suggesting that individuals with MUD
display lower levels of exploration and altered belief-updating. One study
showed that participants with amphetamine use disorder engaged in less
information-seeking than healthy controls in a decision-making task that
had no cost associated with exploration10. This difference could be partially
attributable to drug effects, given that chronic amphetamine use has been
shown to deplete intracellular dopamine11 and that lower tonic dopamine
levels have themselves been linked to reduced exploratory behavior in
individuals with substance use disorders12. Furthermore, one longitudinal
study of MUD found that participants who decreased methamphetamine
use over a period of six weeks showed higher levels of DE by the end of that
period13, supporting the idea that methamphetamine use may affect
exploratory behavior. Notably, in addition to lower levels of exploration,
multiple studies have also found evidence of maladaptive belief updating
in individuals withMUD, which is often operationalized in terms of altered
learning rates within computational models14–19. This overall pattern of
altered sensitivity to, and learning from, choice outcomes may help explain
continued use and high relapse rates despite reduced quality of life20.

In this study, we therefore had two main aims. First, we aimed to test
whether, relative to healthy comparisons (HCs), individuals with MUD
would show reduced DE and altered learning rates, as suggested by the
literature reviewed above. Second, we sought to test how an aversive
interoceptive state (i.e., a somatic anxiety induction) may affect these
mechanisms. This allowed us to examine whether physical symptoms
typically associated with withdrawal might exacerbate maladaptive
decision-making patterns in those with MUD by curtailing further
exploration. The latter aim was further motivated by previous work
demonstrating increased risk of relapse in substance use disorders under
heightened negative affective states21, suggesting that sensitivity to current
anxiety levels couldbe an important factor inpromotingmaladaptive choice
within this population. There is also a related body of work indicating
relationships between anxiety, exploration, and learning rates more gen-
erally (for a review, see Chou et al.22). As the avoidance dynamics driven by
these mechanisms are expected to be similar in other substance use dis-
orders (and reflect known maintenance factors in psychopathology more
broadly; e.g., anxiety, depression)23, these results could also inform future
studies with a more transdiagnostic focus.

To accomplish these aims, we fit a computational model with both
exploration and learning rate parameters to choice behavior on an estab-
lished explore-exploit decision task in individuals with MUD and HCs—
both with and without a breathing-based aversive interoceptive state
induction.We then tested for both group differences and effects of induced
somatic anxiety. We hypothesized that individuals with MUDwould show
lower levels of DE than HCs. We also hypothesized that the state anxiety
induction would decrease DE in both groups.

As a supplementary aim, we also sought to replicate prior exploratory
results demonstrating a relationship between DE and cognitive reflective-
ness, and extend this to individuals with MUD9. Cognitive reflectiveness is
the tendency to think through a problem before making a decision, instead
of simply trusting initial impulses or the first answer that comes to mind24.
We considered the possibility that lower levels of reflectiveness character-
istic of substance use disorder populations (and less reflection on uncer-
tainty in particular) might help to explain reduced DE. This could be of
potential clinical relevance, as cognitive reflectiveness has been shown to
improve with training25,26. Thus, if this hypothesis were confirmed, it would
suggest that improving cognitive reflectiveness might promote more
adaptive information-seeking in this population. We therefore tested the
supplementary hypothesis that individuals with MUD would differ from
HCs in reflectiveness and that this would account for differences in DE
within a mediation model.

Methods
Participants
Participants included56 inpatient treatment-seeking individualswithMUD
and 58 HCs. Individuals with MUD were currently abstinent (mean time
since methamphetamine use = 47.58 days, mean time since starting
treatment = 34.07 days) and recruited from two recovery homes in the
Tulsa, Oklahoma area: (1) GRANDand (2)Women in Recovery (WiR). All
individuals in theMUDgroupmetcriteria for aDSM-5diagnosis ofCurrent
Amphetamine Use Disorder due to use of methamphetamine, which was
assessed by clinical interview (Mini International Neuropsychiatric Inter-
view 727). Due to high rates of comorbidity, individuals withMUDwere not
excluded based on the presence of other substance use disorders or
depression/anxiety disorders (for a list of comorbid disorders in the MUD
group, see Supplementary Table S1). However, individuals with bipolar
disorder, eating disorders, schizophrenia, or obsessive-compulsive disorder
were excluded. Current use of psychotropic medications was permitted in
the MUD group, as these are frequently utilized by providers in acute
substance use treatment. HCs did not have any history of psychiatric illness
and were not on any psychotropic medication. We note that data from this
HC group have been used for comparison to a different clinical group in a
separate report28.

Protocol
After providing informed consent to participate in a larger study protocol
approvedbyWCGIRB (#20211403), participants completed adrug test and
breathalyzer assessment to confirmeligibility for the study.Next, individuals
with MUD completed the Desire for Speed (Methamphetamine) Ques-
tionnaire (DSQ)29 to assess baseline craving levels.

Following completion of this questionnaire, participants were fit
with a silicon mask (see Fig. 1) that would later be used for anxiety
induction during performance of the Horizon Task (described below)7.
This breathing-based anxiety induction apparatus has been used safely
and effectively in several previous studies4,30,31. Here, filters are used to
add inspiratory resistance (i.e., requiring more effort to breathe in, but no
added effort to breathe out), which induces a sensation of air hunger and
elevates somatic anxiety. This initial fitting period was part of a sensitivity
protocol designed to confirm sufficient comfort with the mask and allow
us to assess how anxiety changed as a function of resistance level. During
this preliminary sensitivity protocol, participants breathed through the
mask while being exposed to six levels of resistance (0, 10, 20, 40, 60, and
80 cmH2O/L/sec) in ascending order for one minute each, with a short
break in between each resistance. After each exposure, they were
instructed: “Please rate howmuch anxiety you felt while breathing from 0
to 10” (where 0 indicates no anxiety and 10 indicates maximum possible
anxiety). These are referred to below as self-reported anxiety scores. After
completing this protocol, participants removed the mask, and the MUD
group completed the DSQ a second time to assess whether craving levels
had changed due to anxiety induction.
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After this sensitivity protocol, participants completed neuropsycho-
logical testing and additional questionnaires as part of the larger study
protocol. This ensured participants were able to return to a baseline arousal
state before performing theHorizonTask. Participants were then re-fit with
the mask before task performance and indicated their baseline level of
anxiety (usingboth the self-report itemmentionedabove and theState-Trait
Anxiety Inventory [STAI] State scale32). Next, they completed two runs of
the Horizon Task, where one of the runs included a breathing resistance of
40 cmH2O/L/sec (counterbalanced order across participants). After each
run, they again completed the STAI-State scale and indicated their self-
reported anxiety during task performance.

Horizon task
As in previous studies7,9, the Horizon Task here consisted of 80 games in
which participants chose between two slot machines with different
(unknown) average payout values (see Fig. 1 for a depiction of the task). For
one of the slotmachines, results were sampled from aGaussian distribution
with a mean of either 40 or 60 and a fixed standard deviation of 8. For the
other slot machine, the distribution was shifted 4, 8, 12, 20, or 30 points in
either direction from the first slot machine.

Participants first observed outcomes of four forced choices before they
were allowed to make either one or six free choices between options to
maximize the total number of points received. Games with one or six free
choices are referred to as Horizon 1 (H1) and Horizon 6 (H6) games,

respectively. The forced choices in each game were either equally infor-
mative (two forced choices for each slot machine) or unequally informative
(three forced choices for one slot machine and one for the other). The
different information conditions, decision horizons, andmean slotmachine
values were all counterbalanced throughout the task.

This task structure is therefore designed to test how choices are
influenced by differences in available information, the usefulness of gaining
information, and differences in expected reward. Here, a greater propensity
to choose the more uncertain option in unequal information trials (i.e.,
choosing the slotmachine that was only chosen once during forced choices)
reflects an information bonus, while the propensity to choose the
option with lower observed reward reflects decision noise. As described
further below, these propensities are assumed to be moderated by learning
rates during forced-choice trials and by the expected number of future
choices (one vs. six; H1 vs. H6 conditions). Namely, information bonus and
decision noise are expected to increase fromH1 toH6 –where this increase
reflects DE and RE, respectively—because information gained through
exploration is only useful for guiding future choices within H6 games.

Tominimizepotential influences on individual differences in behavior,
the observed outcome for each choice was sampled from the underlying
Gaussian distributions butfixedacross participants and task runs. Thus, two
participants who chose the same option on a specific trial always observed
the same result. However, after preliminary checking of data in the first four
participants (allHCs), unexpected behavior in certain games ledus to realize

Fig. 1 | Anxiety induction and behavioral task. A The silicon mask used during
both runs of the Horizon Task. B An example resistor attached to the mask via a
plastic tube (not depicted), causing participants to experience resistance during
inhalation. A resistance of 40 cmH2O/L/sec was used for one of the runs of the
Horizon Task to induce somatic anxiety. The other run was completed without
breathing resistance. C Boxplots showing the median and quartile values of parti-
cipants’ self-reported anxiety scores at baseline, during the task run without
breathing resistance, and during the task run with breathing resistance. D Horizon

Task: Participants first observed outcomes of four forced choices before they were
allowed to make either one or six free choices between options to maximize the total
number of points received. Games with one or six free choices are referred to as
Horizon 1 (H1) and Horizon 6 (H6) games, respectively. The forced choices in each
game were either equally informative (two forced choices for each slot machine) or
unequally informative (three forced choices for one slot machine and one for the
other), creating differences in uncertainty about the average reward value of each
option. The letters “XX”were displayed in place of point values on the unchosen side.
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that forced choice outcomes in a few cases were not representative of the
underlying distributions, which generated concerns given the number of
trials per task condition (i.e., with respect to generative mean differences).
Tominimize this issue, forced choice results in these cases were re-sampled
until theymore closely alignedwith the true differences between underlying
distributions. Any potential effects of task version on behavior were
accounted for in subsequent analyses.

Computational model
An established computationalmodel wasfit to task behavior (i.e., predicting
thefirst free choice across games), as described indetail byZajkowski, et al.33.
In brief, the probability of choosing the right option was calculated using a
logistic choice function that included the difference in expected reward
values betweenoptions,ΔR, the informationdifference betweenoptions,ΔI,
a potential bias toward the left vs. right choice, B, and decision noise, σ, as
follows:

p choose right
� � ¼ 1

1þ exp ΔRþAΔIþB
σ

� � ð1Þ

The information difference (ΔI) was equal to +1 when one outcome
was shown for the left option (as choosing the left option would be more
informative), −1 when three outcomes were shown for that option, and 0
when two outcomes were shown for each option. This was then scaled by a
free parameter referred to as the information bonus (depicted above as A).
The expected reward value difference (ΔR) was calculated using a Rescorla-
Wagnerupdate equation,where the expected rewardvalueR for eachoption
i on time step t was updated based on the prediction error between the
expected reward Ri

t and observed reward ri. The learning rate α varied as a
function of uncertainty (i.e., in relation to the number of previous obser-
vations):

Ri
tþ1 ¼ Ri

t þ α ri � Ri
t

� � ð2Þ

The initial learning rate α0 was a free parameter fit to participant data.
For each subsequent choice, the learning rate was updated with the fol-
lowing equation:

1
αit

¼ 1
αit�1 þ αd

þ 1 ð3Þ

The drift term, αd , influences how learning rate changes over time. It
can also be related to an asymptotic learning rate (α1) with the following
equation:

αd ¼
ðα1Þ2
1� α1

ð4Þ

Theα1 term (bound between0 and 1) is also a free parameter fit to the
data (entailing a value for αd). This asymptotic learning rate is the value to
which learning rate would theoretically converge if the game were played
indefinitely (i.e., due to evolving levels of uncertainty after seeing an
increasing number of outcomes). Within the Kalman filter model, αd
reflects the ratio between expected instability (drift) in the underlying
rewardmean and expected outcome noise around that rewardmean. Based
on the final equation above, it therefore follows that slower asymptotic
learning rates can be seen to reflect an implicit belief that underlying reward
means are stable (i.e., minimal drift within a game) and/or that each
observed outcome is unreliable (i.e., high levels of outcome noise).

To get parameter estimates for eachparticipant, a hierarchicalBayesian
model34with 12 freeparameters in totalwasfit using aMarkovChainMonte
Carlo (MCMC) method implemented with MATJAGS35. The spatial bias
(B) and decision noise (σ) were fit separately for the four combinations of
horizon (H1 or H6) and information condition (equal or unequal). The
information bonus (A)wasfit separately for the twohorizon conditions (i.e.,

this can only be fit for unequal information games). The initial learning rate
and asymptotic learning rate werefit across all games together. In our fitting
procedure, second-level hyperparameters defined the prior distributions
from which individual parameters were sampled (see Supplementary
Table S2 for complete specification of these prior distributions). All parti-
cipants inboth conditionswere includedundera single second-level prior so
that the hyperpriors for HCs and individuals with MUD were equivalent.
This was done to prevent any artificial bias toward group or condition
differences.

Previous work has shown that estimates of initial reward expectations
trade off with information bonus estimates on this task33, as optimistic
reward expectations can also promote the choice of unfamiliar options.
Thus, given our focus on directed exploration, we fixed the initial reward
expectation to aneutral value of 50 to ensure reliableparameter estimates for
the information bonuses. We assessed the recoverability of model para-
meters by measuring the correlation between parameters used to simulate
data and parameters estimated from fitting that simulated data (see Sup-
plementary Methods and Supplementary Fig. S2 for details).

Measures
Participants were asked to indicate the sex theywere assigned at birth. Next,
they completed the followingmeasures to assess relevant clinical symptoms
as well as trait and state psychological characteristics.

Symptom severity. To measure symptom severity in the MUD group,
we used the Drug Abuse Screening Test (DAST), the Methamphetamine
Withdrawal Questionnaire (MAWQ), and the Desire for Speed
(Methamphetamine) Questionnaire (DSQ) mentioned above. DAST
measures overall drug abuse severity and interference with life
functioning36; MAWQ measures withdrawal symptoms37; and DSQ
measures current craving levels29. These measures were only gathered in
the MUD group.

Tomeasure comorbid symptomdimensions associatedwithMUD,we
usedquestionnairesmeasuringdepression, anxiety, and impulsivity.Overall
depressive symptoms were measured using the Patient Health Ques-
tionnaire (PHQ-9)38. State and trait anxiety were measured with the State-
Trait Anxiety Inventory (STAI-State/Trait)32,39. Impulsivity was measured
with the Urgency-Premeditation-Perseverance-Sensation Seeking-Positive
Urgency (UPPS-P) Impulsive Behavior Scale Total Score40,41.

Cognitive reflectiveness. The Cognitive Reflection Test (CRT-7)42

measures the tendency to “stop and think” before immediately trusting
one’s intuition. The test asks seven short questions designed such that
there is an immediately intuitive, but incorrect answer, and a correct
answer that, while not logically difficult, requires the individual to devote
effortful cognitive resources instead of immediately choosing the intui-
tively appealing response. An example item is “If it takes 5 machines
5 min to make 5 widgets, how long would it take 100 machines to
make 100 widgets?” (intuitive incorrect answer: 100 min; correct
answer: 5 min).

Working memory. The List Sorting Working Memory Test from the
NIHToolbox Cognition Battery43 was used to assess workingmemory. In
our analyses, we used participants’ t-scores adjusted for age and sex.

Statistical analyses
This study was not pre-registered. Between-subject statistical analyses were
carried out in R (version 4.4.1) with R Studio. As explained further
below, k-means clustering was performed for α0 using the kmeans function
of the stats package44. Linear mixed-effects models (LMEs) and logistic
mixed regressions were run using the lmer function and the glmer function
of the lme4package45. For the logisticmodels, thebobyqaoptimizerwas used
to estimate the coefficients. In all mixed-effects models, a term for partici-
pant ID was included to allow for random intercepts. Data distributions
were visually inspected to confirm that assumptions of each statistical test
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were met. Effect sizes were calculated with the F_to_eta2 function of the
effectsizepackage46.All continuouspredictorsweremean-centeredusing the
gscale function of the jtools package47. Unless otherwise stated, categorical
variables were sum-coded as factors, including group (HCs =−1, MUD=
1), breathing resistance (absent =−1, present = 1), information condition
(equal =−1, unequal = 1), horizon (H1 =−1, H6 = 1), sex (male partici-
pants =−1, female participants = 1), and task version (main version =−1,
initial version in first four participants = 1).

The variables age and sex were included in all models as potential
covariates to ensure theydidnot explainobserved effects.As a small number
of participants also completed a slightly different version of the task (i.e.,
with a different sequence of reward values sampled from the underlying
generative means; described above), task version was also included in all
models as a potential covariate. After controlling for age, sex, and task
version, follow-up models were run that additionally included working
memory capacity, given that general cognitive ability has previously been
shown to positively correlate with performance in the Horizon Task9. As
working memory data were missing for a subset of participants (N = 5), its
potential explanatory power was only assessed in the subset of participants
with available data in these follow-up analyses (as this would otherwise
effectively removedata fromthesefive participants fromall analyses).When
necessary, significant effects were further interpreted using post-hoc con-
trasts of estimated marginal trends (EMTs) or estimated marginal means
(EMMs)using the emmeanspackage48.All t-testswere two-sided.We report
95% confidence intervals for the regression coefficients estimated in these
frequentist analyses.

To evaluate the minimum effect size we could detect when testing the
hypothesized effect of group on DE (i.e., in the LME analysis described
above), we performed a sensitivity power analysis (using the wp.rmanova
function of the WebPower package). Assuming a false positive rate of
p < 0.05, this analysis indicated that our sample size of 114 would provide
80% power to detect a medium effect size of η2p = 0.065.

Protocol validation. To test whether administration of the moderate
breathing resistance level (40 cmH2O/L/sec) used during task perfor-
mance successfully increased anxiety, an LME was run predicting self-
reported anxiety during the task, with resistance condition (baseline, task
run with resistance, task run without resistance), group, and their
interaction as predictors. Identical LMEs were also run using STAI-State
scores as the outcome variable in place of self-reported anxiety to confirm
consistency.

To further confirm the efficacy of the aversive state induction, we
performed another LME to test if administration of the breathing resistance
successfully induced anxiety within the pre-task exposure protocol. This
model specifically assessedwhether self-reported anxiety levelwas predicted
by breathing resistance level (0, 10, 20, 40, 60, and 80 cmH2O/L/sec), group,
and/or their interaction.

Computational analyses. Computational measures included: directed
exploration (DE), random exploration (RE), initial learning rate (α0), and
asymptotic learning rate (α1). DE was calculated by subtracting the
information bonus parameter fit to H1 games from that fit to H6 games.
This allowed us to measure the degree to which participants became
more information-seeking as decision horizon increased (i.e., when
information became goal-relevant). Note that this only applied to games
in which unequal information was given. RE was calculated by sub-
tracting the decision noise parameter fit to H1 games from that fit to H6
games, allowing us to measure the degree to which participants became
less value sensitive in their initial choice as decision horizon increased
(i.e., which can also serve as an information-seeking strategy). Analyses
of RE were here restricted to games where equal information was given,
such that directed information-seeking could not account for any
apparent changes in value sensitivity. For analyses with α1 as an out-
come variable, we also included α0 as a covariate, given that those with
the highest initial learning rate tended to experience the greatest decrease

in learning rate over time (somewhat analogous to regression to the
mean). For these variables, potential outliers were identified using an
iterative Grubbs’ method (threshold: p < 0.01), implemented with the
grubbs.test function from the outliers package49.

To examine potential effects of group and breathing resistance on each
of these model parameters, separate LMEs were run predicting each para-
meter value based on group, resistance condition, and their interaction.
Note that, because α0 values showed a bimodal distribution across partici-
pants (see below), we instead performed a k-means clustering analysis and
divided participants into those with high and low values, and then used
cluster membership as a categorical outcome variable in logistic mixed
regressions in place of LMEs. If extreme values of model parameters were
identified (testedwithin each resistance condition separately), analyses were
repeated with those data removed, and any discrepancies between results
with/without outliers were reported.

To assess whether observed differences in DE and RE were better
explained by differences in H1 or H6, separate models were also run with
information bonus or decision noise as the outcome variable, respectively,
including group, horizon, and their interaction as predictors. Note that the
strength of the interaction between horizon and group can here also be seen
as a test of group differences in DE or RE. As a complementary approach,
Bayesian analyses were also run using the brm function within the brms
package (using default [flat] prior settings)50. These models had the same
structure as our frequentist analyses, but additionally incorporated the
posterior variance of each parameter estimate for each participant. Bayesian
95% Credible Intervals (BCIs) and Bayes Factors (BFs) were used to com-
pare the likelihood of a model including the interaction between horizon
and group to a model omitting that interaction. The full model was then
compared to an extended model that additionally included a three-way
interaction between breathing resistance, horizon, and group. Thiswas used
to evaluate whether there was evidence for a group difference in how the
breathing resistance influenced DE (i.e., whether group membership
moderated the interaction between resistance and horizon).

For the learning rate parameters, we conducted a further Bayesian
analysis to test for an effect of group by comparing a full model including
group, breathing resistance, and their interaction to a reduced model with
only breathing resistance. To evaluate the interaction between group and
breathing resistance, we also compared the full model to a reduced model
that included only the main effects of group and breathing resistance. This
allowed us to determine whether group differences in the learning rate
parameters were independent of breathing resistance.

To better interpret our main results, we also carried out a test of group
differences in avoidance of uncertainty by calculating the (frequency-based)
probability of choosing the option with the greater observed mean when it
was also the option with greater uncertainty (i.e., with only one forced-
choice outcome shown). This was done for the first free choice on H1 and
H6 games separately.We then tested an LMEpredicting this probability for
H6 games based on group and resistance condition. The corresponding
probability for H1 games was also included in the model to account for any
baseline tendencies to approach or avoid uncertainty when exploration
would not be helpful. An analogous LME was also run to test if negative
outcome avoidance differed between groups. This model instead predicted
the probability of choosing the option with the greater observed reward
mean when it was also the low-uncertainty option (i.e., the one with three
observed forced-choice outcomes) in H6 games based on group and resis-
tance condition, while again controlling for baseline tendencies inH1.Here,
we reasoned that those with greater negative outcome avoidance would
more often choose the option with the higher observed value, despite the
greater information gain afforded by the other option.

Finally, we tested if patterns of behavior captured by the model were
related to individual differences in somatic anxiety, substance use
symptoms, and/or measures of affective psychopathology. To do so, we
first ran LMEs predicting each computational parameter value based on
self-reported anxiety level during the task. Among other covariates, the
effects of group, resistance condition, and their interaction were also
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included, as well as the interaction between resistance condition and self-
reported anxiety. We next tested LMEs within the MUD group pre-
dicting each parameter value based on DAST, DSQ, or MAWQ scores
(tested separately), accounting for the effect of breathing resistance. We
were similarly interested in examining whether the relationship between
parameter values and drug-related symptoms differed between resistance
conditions, so these interactions were also included in the models. We
then tested LMEs within the MUD group predicting each parameter
value based on the presence of other comorbid substance use disorders
separately (present/absent), accounting for any effect of breathing
resistance. Analogous models were also run that included continuous
measures of affective psychopathology (i.e., PHQ-9, STAI-Trait, and
UPPS-P) as predictors. To determine if medication status (medicated/
unmedicated), time since last use of methamphetamine, and/or time
since starting treatment might influence model parameters, similar LMEs
were run with those variables separately.

Model-based predictors of choice accuracy. To evaluate the effect of
experimental condition on task performance, we tested an LME pre-
dicting first free choice accuracy based on horizon, information condi-
tion, group, breathing resistance, and the three-way interactions of
horizon, group, and breathing resistance, as well as horizon, group, and
information condition (including respective two-way interactions). We
additionally tested if these variables predicted accuracy across the free
choices of the H6 condition. This model included choice number (1–6),
group, information condition, and breathing resistance, as well as the
three-way interaction of choice number, group and breathing resistance
as well as choice number, group, and information condition (including
respective two-way interactions). To examine how model parameters
influenced subsequent task performance in H6 trials (i.e., to interpret
whether some values might be considered more optimal than others), we
also examined if accuracy was predicted by each of the model parameters,
free choice number (2–6; i.e., excluding the first free choice to which
these parameters were directly fit), resistance, and/or group, and whether
a given model parameter moderated the improvement in accuracy as
choice number increased.

Model parameters as predictors of cognitive reflectiveness. We also
sought to replicate prior results9, and extend them to individuals with
MUD, linking computational Horizon Taskmetrics (DE in particular) to
cognitive reflectiveness (i.e., CRT scores). We therefore tested if model
parameters could be predicted by the number of correct answers on this
measure (accounting for effects of resistance). Group was included as a
covariate to ensure that observed effects were not explained by group

differences in cognitive reflectiveness or parameter values (see Table 1). If
CRT scores significantly predicted a given model parameter, we subse-
quently tested if CRT scores mediated group differences in that para-
meter. The mediate function within the mediation package was used to
test for these effects using a nonparametric bootstrapping approach that
included 5,000 Monte Carlo simulations. Possible effects of breathing
resistance were also incorporated into these analyses. After testing for
potential mediation effects, we further determined if any observed rela-
tionships were specific to the MUD population by testing LMEs pre-
dicting computational parameter values based on CRT scores.

Reporting summary. Further information on research design is avail-
able in the Nature Portfolio Reporting Summary linked to this article.

Results
To acquire a comprehensive clinical phenotype, participants completed
several cognitive and clinical scales. Compared to HCs, the MUD group
showed elevated symptoms of anxiety and depression, higher impulsivity,
reduced cognitive performance (working memory), and lower cognitive
reflectiveness (see Table 1).

The aversive state induction successfully increased anxiety
during task performance across all participants
In the LME predicting self-reported anxiety based on group, resistance
condition (baseline, task run without resistance, task run with resistance),
and their interaction, all effects were significant (Group: [F(1,109.0) = 30.20,
p < 0.001, η2p = 0.22, b = 1.03, CI = (0.281, 1.781)]; Resistance Condition:
[F(2,224.0) = 82.58, p < 0.001, η2p = 0.42, b(No Resistance) = 0.155
(−0.316, 0.626), b(Resistance) = 1.345 (0.874, 1.816)]; Interaction:
[F(2,224.0) = 10.43, p < 0.001, η2p = 0.09, b(MUD x No Resistance) = 0.738
(0.065, 1.410), b(MUD x Resistance) = 1.566 (0.894, 2.238)]), indicating the
breathing resistance successfully induced anxiety during the task and this
effect was magnified for individuals with MUD (see Fig. 1). These effects
were also observed for the analogous LME predicting STAI-State anxiety
(Group: [F(1,109.0) = 14.88, p < .001, η2p = 0.12, b = 3.98, CI = (0.011,
7.950)]; Resistance Condition: [F(2,224.0) = 113.48, p < 0.001, η2p = 0.50,
b(No Resistance) = 1.948 (−0.214, 4.111), b(Resistance) = 9.138
(6.975, 11.300)]; Interaction: [F(2,224.0) = 5.73, p = 0.004, η2p = 0.05,
b(MUD x No Resistance) = 3.909 (0.823, 6.994), b(MUD x Resistance) =
5.094 (2.009, 8.180)]) and in the LME regressing self-reported anxiety
based on continuous levels of resistance, group, and their interaction
(Resistance Condition: [F(1,564.5) = 389.63, p < 0.001, η2p = 0.41, b = 0.041,
CI = (0.037, 0.045)]; Group: [F(1,109.1) = 12.41, p < 0.001, η2p = 0.10,
b = 0.72, CI = (0.323, 1.123)]; Interaction: [F(1,564.5) = 22.72, p < 0.001,

Table 1 | Descriptive characteristics for HCs and individuals with MUD

Questionnaire HCs (N = 58) MUD (N = 56) Statistical Test p Cohen’s d (w for Sex)

Sex 42 F, 16M 20 F, 36M χ2(1) = 14.02 <0.001 0.35

Age 35.41 (13.08) 36.75 (7.27) t(89.8) =−0.68 0.500 −0.13

Working Memory1 52.43 (8.01) 45.70 (10.70) t(96.2) = 3.70 <0.001 0.71

PHQ-9 1.66 (2.27) 4.30 (4.00) t(86.3) =−4.32 <0.001 −0.81

STAI-Trait 29.17 (7.40) 39.07 (9.49) t(104.0) =−6.20 <0.001 −1.16

UPPS-P Total 116.78 (17.68) 145.05 (20.52) t(108.4) =−7.87 <0.001 −1.48

CRT-72 3.33 (2.18) 0.84 (1.18) t(88.8) = 7.60 <0.001 1.42

DAST – 7.70 (1.90) – – –

MAWQ Total – 7.79 (7.34) – – –

DSQ3 – 92.87 (34.21) – – –

Note: Superscripts indicatewheredatawere only available for a subset of participants because thesemeasureswere addedpart-way into the study.1HCs = 56,MUD = 53, 2HCs = 58,MUD = 55, 3MUD = 39.
Bolding is used to highlight statistically significant results. All t-tests were two-sided. The columns labeled “HCs” and “MUD” show the means and standard deviations for each measure.
Working Memory List Sorting Working Memory Test from the NIH Toolbox Cognition Battery, PHQ-9 Patient Health Questionnaire (Depression), STAI State-Trait Anxiety Inventory, UPPS-P Impulsive
Behavior Scale, CRT-7 Cognitive Reflectiveness Test (number of correct answers), DAST Drug Abuse Screening Test,MAWQMethamphetamine Withdrawal Questionnaire, DSQ Desire for Speed
(Methamphetamine) Questionnaire.
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η2p = 0.04, b = 0.01, CI = (0.006, 0.014)]). All effects described above
remained significant when working memory was included as a predictor in
the models (see Supplemental Results for details).

Individualswithmethamphetamineusedisordershowlower task
performance than healthy comparisons
As an initial assessment of task performance, we tested an LME predicting
first free choice accuracy (i.e., choice of the option with the higher average
reward value) based on the relevant task and experimental conditions. In
brief, accuracy was higher in H1 than H6 games (F(1,788.0) = 137.10,
p < 0.001, η2p = 0.15, b =−0.04, CI = [−0.043,−0.031]), higher in the equal
information condition than the unequal information condition
(F(1,788.0) = 89.32, p < 0.001, η2p = 0.10, b =−0.03, CI = [−0.036,−0.024]),
and individuals with MUD showed lower accuracy than HCs overall
(F(1,109.0) = 31.10, p < 0.001, η2p = 0.22, b =−0.07, CI = [−0.092,−0.045]).
Further, the change in accuracy between H1 and H6 games was less in
individuals with MUD than HCs (F(1,788.0) = 8.14, p = 0.004, η2p = 0.01,
b = 0.01, CI = [0.003, 0.015]), consistent with less exploration in the MUD
group. These effects remained significant when working memory was
included as a predictor in the model (see Supplementary Table S6 for full
model results and Supplementary Table S7 for descriptive information
regarding task accuracy in each of the experimental conditions).

To confirm expected improvements in accuracy over time, and
potential modulation of this effect by group or anxiety induction, we
tested a subsequent LME predicting accuracy on the six free choices of
H6 games based on group, information condition, choice number (1–6),
breathing resistance, and the three-way interactions of choice number,
group, and breathing resistance, as well as between choice number,
group, and information condition (including respective two-way inter-
actions). We observed that accuracy was again higher in HCs (estimated
marginal mean [EMM] = 0.81) than in individuals with MUD (EMM=
0.69; contrast[c]= 0.126, t(109) = 5.42, p < 0.001), higher in the equal
than unequal information condition (EMM[equal] = 0.77, EMM[uneq-
ual] = 0.73, c = 0.040, t(2612) = 10.73, p < 0.001), and increased as a
function of choice number (see Table 2). There was also a significant
interaction between group and resistance (F(1,2612.0) = 4.15, p = 0.042),
reflecting a numerical increase in accuracy with the breathing resistance
in HCs (EMM[Resistance] = 0.82, EMM[No Resistance] = 0.81,
c = 0.008, t(2612) = 1.52, p = 0.129) and a numerical decrease in accuracy
in those with MUD (EMM[Resistance] = 0.68, EMM[No Resistance] =
0.69, c = 0.007, t(2612) =−1.36, p = 0.172; see Fig. 2). The effects of
choice number (F(1,2497.0) = 116.85, p < 0.001, η2p = 0.04, b = 0.012,
CI = [0.010, 0.014]), group (F(1,103.0) = 18.24, p < 0.001, η2p = 0.15,
b =−0.054, CI = [−0.079, −0.029]), information condition
(F(1,2497.0) = 86.22, p < 0.001, η2p = 0.03, b =−0.018, CI = [−0.022,
−0.014]), and the interaction between group and resistance

(F(1,2497.0) = 4.60, p = 0.032, η2p < 0.01, b =−0.004, CI = [−0.008,
0.0004]) remained significant when controlling for working memory in
the subset of participants for which these scores were available.

Individuals with methamphetamine use disorder show less
directed exploration, random exploration, and slower learning
rates than healthy comparisons
The intercorrelations between each of the fitted parameter values were low
(see Supplementary Fig. S1), suggesting that each parameter explained
independent aspects of participant behavior. Further, parameter recover-
ability was sufficient, indicated by moderate-to-high correlations between
parameter values used to simulate behavior and corresponding parameter
values estimated from that simulated behavior (see Supplementary Fig. S2).
Descriptive information regarding the computational parameter values for
each group and experimental condition is provided in Supplementary
Table S8.

In our primary computational analyses, LMEs were used to predict
model parameter values based on group, resistance level, and their inter-
action (see Table 3). Results showed higher values in HCs for DE
(EMM[HCs] = 6.06, EMM[MUD] = 4.58, c = 1.48, t(109) = 2.33,
p = 0.021), RE (EMM[HCs] = 1.67, EMM[MUD] = 1.04, c = 0.63,
t(109) = 1.98, p = 0.050), α0 (initial learning rate), and α1 (asymptotic
learning rate; i.e., the value to which a participant’s learning rate would
theoretically converge if the game were played indefinitely; EMM[HCs] =
0.30, EMM[MUD] = 0.22, c = 0.077, t(118.3) = 3.06, p = 0.003). Notably,
the group difference in RE was no longer significant after two potential
outliers were removed using a Grubbs’ test (F(1,110.0) = 1.59, p = 0.209,
η2p = 0.01), indicating high values that fell sufficiently outside the overall
sampledistribution. In logisticmixed regressionspredictingα0 (see Fig. 3 for
a visualization of the bimodality of the distribution), we observed a sig-
nificant group difference (proportion in high-value cluster: HCs = 0.67;
MUD= 0.32; see Table 3 for statistical results). There was nomain effect of
breathing resistance or interaction with group for any parameter. Com-
plementary Bayesian models predicting each learning rate based on group,
breathing resistance, and their interaction allowed incorporation of infor-
mation regarding posterior variances around each parameter estimate.
These analyses provided further evidence for lower values of α0 (b =−0.15,
BCI = [−0.22, −0.09], BF10 = 51.09) and α1 (b =−0.06, BCI = [−0.09,
−0.04], BF10 = 14.48) in individuals withMUD.Notably, however, whenα0
was included as a covariate in the model predicting α1, we did not find
evidence for group differences (b =−0.03, BCI = [−0.06, −0.01],
BF10 = 0.04). There was also less evidence for models including an inter-
action between group and resistance condition in predictingα0 (b =−0.002,
BCI = [−0.01, 0.01], BF10 = 0.01) and α1 (b = 0.004, BCI = [−0.01, 0.02],
BF10 = 0.02), supporting the absence of an effect of breathing resistance in
either group.

Table 2 | LME results predicting accuracy across H6 free choice trials

Outcome
Variable

Predictor Statistical Test p η2p b [95% CI]

Accuracy Choice Number F(1,2612.0) = 124.04 <0.001 0.05 0.012 [0.010, 0.014]

Group F(1,109.0) = 29.35 0.001 0.21 −0.063 [−0.086, −0.040]

Information Condition F(1,2612.0) = 114.67 <0.001 0.04 −0.020 [−0.024, −0.016]

Resistance F(1,2612.0) = 0.02 0.899 <0.01 0.0001 [−0.004, 0.004]

Choice Number x Group F(1,2612.0) = 1.76 0.184 <0.01 −0.001 [−0.004, 0.001]

Choice Number x Information Condition F(1,2612.0) = 0.13 0.717 <0.01 0.0004 [−0.002, 0.003]

Group x Information Condition F(1,2612.0) = 1.24 0.265 <0.01 −0.002 [−0.006, 0.002]

Group x Resistance F(1,2612.0) = 4.15 0.042 <0.01 −0.004 [−0.007, 0.000]

Choice Number x Resistance F(1,2612.0) = 1.31 0.252 <0.01 0.001 [−0.001, 0.003]

Choice Number xGroup x Information Condition F(1,2612.0) = 0.003 0.953 <0.01 0.0001 [−0.002, 0.002]

Choice Number x Group x Resistance F(1,2612.0) = 0.46 0.496 <0.01 −0.001 [−0.003, 0.001]

Bolding is used to highlight statistically significant results.
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Fig. 2 | Choice accuracy on the horizon task. Top: H1 and H6 accuracy for each
choice by group, resistance, and information condition. Error bars show 95% con-
fidence intervals for accuracy at each choice number. As expected, accuracy was
lower in H6 than H1 games for the first free choice (i.e., reflecting random
exploration) and improvedwith further choices inH6 games. The change in first free
choice accuracy between H1 and H6 games was also greater in HCs than in

individuals with MUD, consistent with greater exploration in HCs. Accuracy was
greater in the equal information games than in the unequal information games.
Bottom: Accuracy in the H1 and H6 conditions for each group (i.e., collapsed across
choice numbers), separated by resistance and information condition. Accuracy was
higher in HCs than in individuals with MUD. Breathing resistance increased
accuracy for HCs, but decreased accuracy for individuals with MUD in H6.
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Whenworkingmemory was included as an additional covariate in the
subset of participants with available data, effects of group in the LMEs above
remained significant for all parameters, except in relation to DE, which
became marginal (F(1,103.0) = 3.09, p = 0.082, η2p = 0.03, b =−0.614, CI =
[−1.298, 0.071]; seeSupplementaryTable S9). This suggestedpoorworking
memory might contribute to reduced DE in those with MUD. However,
working memory was not itself a significant predictor in the model pre-
dicting DE (F(1,103.0) = 0.70, p = 0.404, η2p < 0.01, b = 0.027, CI = [−0.036,
0.090]), RE (F(1,103.0) = 0.97, p = 0.326, η2p < 0.01, b =−0.016, CI =
[−0.048, 0.016]), α0 (χ2(1) = 1.85, p = 0.174, b = 0.050, CI = [−0.022,
0.122]), or α1 (F(1,102.8) = 0.03, p = 0.869, η2p < 0.01, b =−0.0002, CI =
[−0.003, 0.002]).

To better interpret these group differences, effects on parameters in
H1 and H6 were then examined separately. In an LME predicting the
information bonus parameter by horizon, group, and their interaction,
the interaction was significant (F(1,340.0) = 12.60, p < 0.001, η2p = 0.04,
b =−0.383, CI = [−0.595, −0.172]), reflecting the group difference in
DE described above (see Fig. 3). Post-hoc contrasts showed that HCs
had higher information bonus values than individuals with MUD in H6
(HCs–MUD= 1.66, t(139.1) = 2.63, p = 0.010), but not in H1
(HCs–MUD= 0.13, t(139.1) = 0.20, p = 0.843). Notably, this interaction
remained significant when accounting for working memory
(F(1,325.0) = 10.72, p < 0.001, η2p = 0.03, b =−0.360, CI = [−0.575,
−0.144]), supporting an independent group difference in DE. Com-
plementary Bayesian analyses incorporating the posterior variance
around information bonus estimates provided further evidence for this
interaction between group and horizon (b =−0.38, BCI = [−0.63,
−0.14], BF10 = 38.78). These analyses also confirmed lower evidence
for the model with a three-way interaction between group, horizon,
and breathing resistance (b = 0.06, BCI = [−0.18, 0.30], BF10 = 0.32),
supporting the absence of an effect of breathing resistance in
either group.

In an analogous LME predicting decision noise based on horizon,
group, and their interaction, the interactionwasmarginal (F(1,340.0) = 3.68,
p = 0.056, η2p = 0.01, b =−0.117, CI = [−0.237, 0.003]). However, this
interaction became significantwhen accounting forworkingmemory in the
subset of participants with available data (F(1,325.0) = 4.13, p = 0.043,
η2p = 0.01, b =−0.129, CI = [−0.253, −0.005]). Post-hoc contrasts here
suggested that group differences in RE were driven by marginally greater
decision noise in those with MUD than HCs in H1 (HCs–MUD=−0.40,
t(212.9) =−1.81, p = 0.072), with no difference in H6 (HCs–MUD= 0.12,
t(212.9) = 0.53, p = 0.598; see Fig. 3). However, complementary Bayesian
analyses did not provide support for this interaction (b =−0.02, BCI =
[−0.15, 0.11], BF10 = 0.18). There was again less evidence for a model with

the three-way interaction between group, horizon, and breathing resistance
(b =−0.02, BCI = [−0.15, 0.11], BF10 = 0.002).

Individualswithmethamphetamine use disorder showedgreater
avoidance of uncertainty
As a complementary test of uncertainty avoidance, we calculated the
probability of choosing the option with the greater observed mean reward
when it was also the option with greater uncertainty (i.e., only one forced
choice outcome shown) on the first free choice for H1 and H6 games
separately. Here, we reasoned that greater uncertainty avoidance would be
reflected by fewer choices of the uncertain option despite the greater
observed reward. To evaluate this, we tested an LME predicting this prob-
ability for H6 games based on group and resistance condition. The corre-
sponding probability for H1 games was also included in the model to
account for any baseline tendency to approach or avoid uncertainty when
explorationwould not be helpful. This LME revealed amain effect of group,
such that individuals withMUDhad a lower tendency to choose the option
with a greater mean reward value when this option had greater uncertainty
(EMM[HCs] = 0.82, EMM[MUD] = 0.74, F(1,117.2) = 6.47, p = 0.012,
b =−0.039, CI = [−0.069, −0.009]). However, the effect of group became
marginal when working memory was included in the model
(F(1,108.2) = 3.80, p = 0.054, b =−0.032, CI = [−0.064, 0.001]). An analo-
gous LME was run to test if negative outcome avoidance differed between
groups. Thismodel instead predicted the probability of choosing the option
with the greater observed mean reward when it was also the option with
lower uncertainty in H6 games based on group and resistance condition,
while again controlling for baseline tendencies inH1.Here,we reasoned that
thosewithgreaternegativeoutcomeavoidancewouldmoreoften choose the
option with the higher observed reward value, despite the greater infor-
mation gain afforded by the other option. In this case, there was no effect of
group (EMM[HCs] = 0.67, EMM[MUD] = 0.66, F(1,112.3) = 0.02,
p = 0.895, b =−0.002, CI = [−0.039, 0.034]), and Bayesian analyses indi-
cated the data provided strong evidence for the absence of this effect
(b = 0.004, BCI = [−0.025, 0.033], BF10 = 0.038). This suggested HCs and
individuals with MUD primarily differed in their avoidance of uncertainty
rather than avoidance of negative outcomes.

No relationships were observed between computational para-
meter values and state anxiety, substance use symptoms, or
measures of affective psychopathology
To determine if somatic anxiety related to the patterns of behavior captured
by themodel, we estimated LMEspredicting each computational parameter
value based on self-reported anxiety during the task. This tested whether
thosewith greater state anxiety alsohad greater changes inbehavior.Among

Table 3 | Results testing effects of group and resistance on primary computational measures

Outcome Variable Predictor Statistical Test p η2p b [95% CI]

DE Group F(1,109.0) = 5.45 0.021 0.05 −0.742 [−1.365, −0.119]

Resistance F(1,112.0) = 1.63 0.204 0.01 −0.187 [−0.480, 0.105]

Group x Resistance F(1,112.0) = 1.56 0.214 0.01 0.186 [−0.106, 0.479]

RE Group F(1,109.0) = 3.93 0.050 0.03 −0.316 [−0.628, −0.004]

Resistance F(1,112.0) = 0.32 0.575 <0.01 −0.060 [−0.277, 0.158]

Group x Resistance F(1,112.0) = 1.85 0.177 0.02 0.151 [−0.067, 0.369]

Initial learning rate Group χ2(1) = 11.02 <0.001 – −1.800 [−2.859, −0.742]

Resistance χ2(1) = 0.15 0.695 – −0.080 [−0.466, 0.306]

Group x Resistance χ2(1) = 0.16 0.685 – −0.080 [−0.466, 0.306]

Asymptotic learning rate Group F(1,118.4) = 9.42 0.003 0.07 −0.039 [−0.063, −0.014]

Resistance F(1,111.6) = 0.88 0.351 <0.01 0.006 [−0.007, 0.019]

Group x Resistance F(1,112.0) = 0.18 0.674 <0.01 0.003 [−0.010, 0.016]

Bolding is used to highlight statistically significant results.
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Fig. 3 | Group differences in exploration and learning on the horizon task. Plots
depict participants’ computational parameter estimates for theHorizon Taskmodel,
where parameter values in task runs with and without the anxiety induction
(breathing resistance) for each participant are connected using thin lines. Thick lines

and surrounding confidence ribbons represent the mean and standard error for
parameter values in each group. Results indicate that theMUD group showed lower
levels of directed exploration, random exploration, and learning rates compared to
HCs, both with and without the breathing resistance manipulation.
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other covariates, effects of group and resistance condition were also inclu-
ded, aswell as the interactionbetween resistance condition and self-reported
anxiety. This interaction captured the possibility that those who were more
sensitive to the somatic manipulation (i.e., showed greater increases in
anxiety) also showed greater changes in exploratory behavior or learning. In
these models, we did not observe any effects of self-reported anxiety in
predicting DE (F(1,219.0) = 0.26, p = 0.611, η2p < 0.01, b =−0.117, CI =
[−0.345, 0.111]), RE (F(1,192.6) = 0.11, p = 0.740, η2p < 0.01, b =−0.014,
CI = [−0.149, 0.121]),α0 (χ

2(1) = 0.07,p = 0.790, b =−0.100,CI = [−0.421,
0.222]), or α1 (F(1,211.6) = 1.24, p = 0.266, η2p < 0.01, b = 0.006, CI =
[−0.004, 0.015]). Nor did we observe a significant interaction between self-
reported anxiety and resistance condition in predicting DE
(F(1,130.7) = 2.49, p = 0.117, η2p = 0.02, b = 0.130, CI = [−0.031, 0.291]), RE
(F(1,147.2) = 0.13, p = 0.720, η2p < 0.01, b =−0.021, CI = [−0.136, 0.094]),
α0 (χ2(1) = 0.98, p = 0.321, b = 0.113, CI = [−0.110, 0.336]), or α1
(F(1,136.9) = 0.13, p = 0.719, η2p < 0.01, b =−0.001, CI = [−0.008, 0.006]).
Thus, we did not find evidence that individual differences in sensitivity to
the somatic manipulation were related to exploratory tendencies or other
patterns of behavior in the task.

Follow-up LMEs were run predicting model parameters based on
substance use symptoms in the MUD group (i.e., DAST, DSQ, MAWQ;
tested separately), breathing resistance, and their interaction. In all models,
we observed no significant main effects of substance use symptoms nor
interaction effects (see Supplementary Tables S10–S12). However, in the
models predicting α1 based on MAWQ and DAST (separately), we
observed significant effects of breathing resistance when working memory
was included as a covariate (see Supplementary Tables S11, S12). Con-
sidering the absence of an effect of breathing resistance in other computa-
tional analyses, and that these results were not hypothesized, we simply note
them here for the interested reader and for purposes of future hypothesis
generation.

LMEs testing potential parameter differences within individuals with
MUDbased on continuousmeasures of psychopathology (PHQ-9,UPPS-P
Total, and STAI-Trait Scores; tested separately), medication status (medi-
cated/unmedicated), time since starting treatment, time since last
methamphetamine use, and comorbid psychopathology (present/absent)
did not show any significant effects (see Supplementary Table S13 for full
statistical results).

Greater random exploration and faster learning rates each
improved performance
To evaluate the theoretical significance of observed group differences, we
tested whether some values for each model parameter might be considered
moreoptimal thanotherswith respect to taskperformanceafter thefirst free
choice in H6 (see Supplementary Tables S14, S15 for full statistical results).
In brief, LMEs revealed that higher values of α0 and α1 each predicted
greater accuracy in the task. Higher values of H6 decision noise predicted
steeper improvements in accuracy over time for equal information games,
while higher values of α0 predicted steeper improvements in unequal
information games. We did not observe a relationship between H6 infor-
mation bonus values and accuracy in unequal information games
(F(1,758.2) = 1.72, p = 0.191, η2p < 0.01, b = 0.002, CI = [−0.001, 0.005]); nor
did we observe that H6 information bonus values related to greater
improvements over time, although the latter result was trending in the
expected direction; F(1,977.1) = 3.27, p = 0.071, η2p < 0.01, b = 0.001, CI =
[−0.000, 0.002].

Directed exploration and learning rates were predicted by cog-
nitive reflectiveness
As a secondary aim, we sought to replicate and extend our prior results
linking exploration to cognitive reflectiveness9. To do so, we tested LMEs
predicting model parameters based on Cognitive Reflection Test (CRT)
scores, accounting for potential effects of group and resistance. Across all
participants, CRT score significantly predicted DE (F(1,107.0) = 3.95,
p = 0.050, η2p = 0.04, b = 0.344, CI = [0.001, 0.683]) and α0 (χ2(1) = 7.04,

p = 0.008, b = 0.699, CI = [0.182, 1.215]), but not α1 (F(1,109.7) = 0.13,
p = 0.719, η2p < 0.01, b = 0.002, CI = [−0.011, 0.015]) or RE
(F(1,107.0) = 0.06, p = 0.811, η2p < 0.01, b = 0.021, CI = [−0.152, 0.195]).
Notably, when additionally controlling for working memory, CRT
remained a significant predictor of α0 (χ2(1) = 7.24, p = 0.007, b = 0.683,
CI = [0.173, 1.104]), while the result became marginal for DE
(F(1,101.0) = 3.81, p = 0.054, η2p = 0.04, b = 0.347, CI = [−0.001, 0.696]).

For analogous models restricted to the MUD sample, CRT score did
not significantly predictDE (F(1,51.0) = 0.23, p = 0.635,η2p < 0.01, b = 0.150,
CI = [−0.465, 0.765]), RE (F(1,51.0) = 0.48, p = 0.493, η2p < 0.01, b = 0.114,
CI = [−0.210, 0.438]), or α1 (F(1,51.4) = 1.77, p = 0.189, η2p = 0.03,
b = 0.018, CI = [−0.008, 0.045]); however, the effect was marginal for α0
(F(1,51.0) = 3.68, p = 0.061, η2p = 0.07, b = 0.066, CI = [−0.003, 0.134]).
Note that, unlike in the full sample, in theMUDgroup alone the distribution
of α0 values was sufficiently normal to use an LME in place of logistic
regression.

Cognitive reflectiveness accounts for group differences in
directed exploration and learning rates
The group difference in computational parameters observed above moti-
vated us to test mediation models in which lower values of DE and α0 in
individuals with MUD might be explained by lower reflectiveness (CRT
scores). These mediation models included group as the predictor variable
and eitherDEor α0 as the outcome variable, withCRT score as the potential
mediator. In the mediation model predicting DE (total effect c =−0.73,
p = 0.024, CI = [−1.36, −0.10]), we observed a significant indirect effect
(ab =−0.50, p = 0.045, CI = [−1.02, −0.01]), and a non-significant direct
effect (c =−0.23, p = 0.567, CI = [−1.02, 0.54]), supporting CRT as a
mediator. In the mediation model for α0 (total effect c =−0.14, p < 0.001,
CI = [−0.20, −0.09]), we also observed a significant indirect effect (ab =
−0.062, p = 0.004, CI = [−0.11, −0.02]), and a significant direct effect
(c =−0.083, p = 0.014, CI = [−0.15, −0.02]), supporting CRT as a partial
mediator. This suggested that lower levels of reflectiveness on uncertainty in
individuals withMUDmay contribute to the lower levels of DE and slower
learning rates observed in this group.

Discussion
In the present study, we compared how treatment-seeking (currently
abstinent) individuals with methamphetamine use disorder (MUD) and
healthy comparisons (HCs) differed in information-seeking and learning
under uncertainty, both with andwithout a somatic anxiety induction. This
allowed us to distinguish the causal effect of state anxiety from potential
effects of other factors linked to psychopathology. As expected, we found
that HCs outperformed individuals withMUD on the task. Computational
modeling revealed that individuals with MUD had lower values of directed
exploration (DE), random exploration (RE), initial learning rate (α0), and
asymptotic learning rate (α1; controlling for α0), while these parameters
themselves were only weakly correlated.

The differences observed in DE and RE support previous research
finding that individuals with substance use problems exhibit reduced
exploration51,52. Importantly, however, unlike several previous studies, the
Horizon Task allowed us to distinguish directed from random strategies,
where measures of DE and RE in this task are also sensitive to beneficial vs.
suboptimal engagement in exploratory behavior (i.e., with vs.without future
choices that could benefit from information gain). Here, DE differences in
individuals with MUD appeared to reflect an attenuated ability to increase
exploration when it was beneficial (i.e., in games with a longer horizon) and
a greater motivation to avoid uncertain options. In contrast, there was not
clear evidence for this pattern of change in exploration between horizon
conditions with respect to RE. Group differences in RE were also no longer
significant after potential outliers were removed and were not supported by
complementary Bayesian analyses; these results should therefore be treated
with caution. Overall, these findings offer insights into more specific cog-
nitive mechanisms that might contribute to maladaptive choice and with-
drawal avoidance.
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The differences observed in initial and asymptotic learning rates are
largely consistent with previous literature (reviewed in ref. 53) and suggest
individuals withMUDupdate their beliefsmore slowly after observing each
new outcome, representing a possible overconfidence in prior beliefs. This
could be taken to reflect a greater expectation that mean reward values
would remain stable. Alternatively, it could indicate the belief that each
observed outcome would be less informative (i.e., more noisy, less trust-
worthy) with respect to the true value of the underlying reward mean54. In
real-world contexts, slower learning rates can prevent individuals from
changing their behavior, despite experiencing harmful consequences.
However, it remains to be shownwhether such results generalize to learning
in daily life in this population.

Contrary to our hypothesis, we did not observe significant effects of
the somatic anxiety induction on any computationalmeasure (although see
ref. 28 for interactions observed in comparisons to an affective disorders
sample). Here, it is notable that, while previous research has shownnegative
correlations between trait anxiety andDE8,9, this study causallymanipulated
somatic state anxiety to differentiate its influence from trait factors in
individuals withMUD.While this could indicate that state anxiety does not
account for differences in information-seeking, it is possible that the resis-
tance level, which was chosen to maintain tolerability, did not induce suf-
ficiently high anxiety. Self-reported anxiety was higher for the task run with
resistance (Mean=3.05) than without resistance (Mean = 1.46), and this
effect was greater for individuals with MUD than HCs, but anxiety scores
were still well below themaximum score of 10. Future workmight therefore
aim to induce higher levels of somatic anxiety in a feasible manner and
reassess its potential effects. Incorporating trait measures of interoceptive
awareness could also help clarify whether the relationship between somatic
anxiety and decision-making is altered in those with higher sensitivity. On
the other hand, our results do appear consistent with some prior work
showing no change in model-based planning after anxiety induction55. To
the extent that DE depends on model-based processes, these results could
point in a similar direction.

In linewith our secondary aim, results also successfully replicated prior
findings9 linking cognitive reflectiveness to DE, and also showed a further
association with initial learning rate. Mediation analyses also suggested
group differences in DE and initial learning rate might be accounted for by
differences in cognitive reflectiveness. This suggests that lower reflectiveness
may reduce adaptive information-seeking in individuals with MUD and
interfere with learning in uncertain environments. It should be stressed,
however, that these analyses on trait reflectiveness were cross-sectional and
do not support causal inference. They simply highlight shared explanatory
variance between these measures that could offer additional insights. We
also note that the relationship between cognitive reflectiveness and model
parameters was not observed in theMUDgroup alone. This could be due to
insufficient sample size, the lower values and restricted range of reflective-
ness scores in theMUDgroup, or perhaps amechanismwhereby substance
use decouples these variables. Future work should examine whether
improving reflectiveness could promotemore adaptive information seeking
and learning, andwhether thismight be clinically beneficial. This possibility
is supported by previous work showing that cognitive reflectiveness can be
improved with training25,26.

Limitations
It is important to consider limitations of thepresent studywhen interpreting
these results. First, our sample size was onlymoderate and did not enable us
to reliably detect small effect sizes. We also could not determine whether
observed group differences represent a pre-existing vulnerability factor or a
consequence of methamphetamine use. No relationships were found with
length of abstinence, days since starting treatment, or medication status,
perhaps suggesting that group differences were better explained by pre-
existing factors or were insensitive to recovery; however, longer recovery
timeswill need to be examined. The presence of affective symptomsor other
comorbid substance use disorders also did not appear to account for any
results.

With these limitations in mind, we found that individuals with
MUD exhibited lower levels of exploration and reduced learning rates
when making decisions under uncertainty. Contrary to expectation, we
did not observe an effect of aversive interoceptive state induction (and
resulting increases in somatic anxiety) on model parameters or other
behavioral metrics, suggesting trait factors may be of more central
importance. Overall, these results highlight directed exploration and
learning rates, and underlying uncertainty estimation processes, as
possible mechanisms of maladaptive choice in individuals with MUD
and may point to specific treatment targets that could be tested in
future work.
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